A109196 Number of returns to the x-axis from above (i.e., d steps hitting the x-axis) in all Grand Motzkin paths of length n.
1, 3, 11, 35, 112, 350, 1087, 3351, 10286, 31460, 95966, 292110, 887629, 2693423, 8163367, 24717575, 74778718, 226066940, 683006416, 2062412936, 6224697139, 18779180645, 56633215930, 170733734210, 514559844007, 1550364293145
Offset: 2
Keywords
Examples
a(3)=3 because we have the following 7 (=A002426(3)) Grand Motzkin paths of length 3: hhh, hu(d), hdu, u(d)h, duh, uh(d) and dhu; they have a total of 3 returns from above to the x-axis (shown between parentheses).
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Programs
-
Maple
g:=(1-z-sqrt(1-2*z-3*z^2))/2/(1-2*z-3*z^2): gser:=series(g,z=0,32): seq(coeff(gser,z^n),n=2..30);
-
Mathematica
Rest[Rest[CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 3 x^2]) / (2 (1 - 2 x - 3 x^2)), {x, 0, 35}], x]]] (* Vincenzo Librandi, Nov 04 2016 *)
Formula
G.f.: (1-z-sqrt(1-2*z-3*z^2)) / (2*(1-2*z-3*z^2)).
a(n) = Sum_{k=0..floor(n/2)} k*A109195(n,k).
a(n) = (1/2) * A109194(n).
From Benedict W. J. Irwin, Nov 02 2016: (Start)
Conjecture: a(n) = (2*(-1)^n + 2*3^n + (2^n*(2*n - 1)!!*(3*A - 4*B))/n! - 3*(n + 1)*C)/8.
A = 2F1(1-n,-n; 1/2-n; 1/4).
B = 2F1(-n,-n; 1/2-n; 1/4).
2^n*(2*n - 1)!!*(3*A - 4*B))/n! = A103872(n-2).
C = 3F2(1-n,(1-n)/2,-n/2; 2,-n-1; 4) = A025565(n)/n. (End)
a(n) ~ 3^n/4 * (1-sqrt(3/(Pi*n))). - Vaclav Kotesovec, Nov 05 2016
D-finite with recurrence n*a(n) +(-4*n+3)*a(n-1) +(-2*n+3)*a(n-2) +3*(4*n-9)*a(n-3) +9*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 08 2021
Comments