A109226 If g(x) is the x-th prime gap, then g(a(n)) are prime gaps which are greater than the sum of the preceding two prime gaps.
30, 34, 42, 46, 53, 61, 62, 66, 91, 97, 99, 106, 114, 121, 137, 145, 146, 150, 154, 162, 172, 175, 180, 189, 203, 214, 217, 221, 232, 239, 250, 258, 259, 263, 266, 274, 278, 289, 293, 297, 304, 309, 316, 319, 324, 331, 334, 335, 338, 342, 344, 350, 357, 360
Offset: 1
Keywords
Examples
34 is in the sequence because if g(34) = 35th_prime - 34th_prime = 149 - 139 = 10 and g(33) = 34th_prime - 33rd_prime = 139 - 137 = 2 and g(32) = 33rd_prime - 32nd_prime = 137 - 131 = 6, then g(34) > g(33) + g(32) or 10 > 2 + 6
Programs
-
Mathematica
g[n_] := Prime[n + 1] - Prime[n]; Select[Range[3, 360], g[ # ] > g[ # - 1] + g[ # - 2] &] (* Ray Chandler, Aug 23 2005 *)
Extensions
Extended by Ray Chandler, Aug 23 2005