cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109244 A tree-node counting triangle.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 13, 7, 3, 1, 46, 24, 11, 4, 1, 166, 86, 40, 16, 5, 1, 610, 314, 148, 62, 22, 6, 1, 2269, 1163, 553, 239, 91, 29, 7, 1, 8518, 4352, 2083, 920, 367, 128, 37, 8, 1, 32206, 16414, 7896, 3544, 1461, 541, 174, 46, 9, 1, 122464, 62292, 30086, 13672, 5776, 2232
Offset: 0

Views

Author

Paul Barry, Jun 23 2005

Keywords

Comments

Columns include A026641,A014300,A014301. Inverse matrix is A109246. Row sums are A014300. Diagonal sums are A109245.

Examples

			Rows begin:
  1;
  1,1;
  4,2,1;
  13,7,3,1;
  46,24,11,4,1;
  166,86,40,16,5,1;
		

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n+j-k, j-k) )))); # G. C. Greubel, Feb 19 2019
  • Magma
    [[(&+[(-1)^(n-j)*Binomial(n+j-k, j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[(-1)^(n-j)*Binomial[n+j-k, j-k], {j,0,n}], {n,0,12}, {k,0,n}] //Flatten  (* G. C. Greubel, Feb 19 2019 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n+j-k, j-k))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [[sum((-1)^(n-j)*binomial(n+j-k, j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 19 2019
    

Formula

Number triangle T(n, k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n+i-k, i-k).
Riordan array (1/(1-x*c(x)-2*x^2*c(x)^2), x*c(x)) where c(x)=g.f. of A000108.
The production matrix M (discarding the zeros) is:
1, 1;
3, 1, 1;
3, 1, 1, 1;
3, 1, 1, 1, 1;
... such that the n-th row of the triangle is the top row of M^n. - Gary W. Adamson, Feb 16 2012