cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109281 Triangle T(n,k) of elements of n-th Weyl group of type B whose reduced word uses n-k generators.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 35, 9, 3, 1, 309, 56, 14, 4, 1, 3287, 443, 84, 20, 5, 1, 41005, 4298, 623, 120, 27, 6, 1, 588487, 49937, 5629, 859, 165, 35, 7, 1, 9571125, 680700, 61300, 7360, 1162, 220, 44, 8, 1, 174230863, 10683103, 793402, 75714, 9584, 1544, 286, 54, 9, 1
Offset: 0

Views

Author

Mike Zabrocki, Aug 19 2005

Keywords

Comments

Row sums are 2^n n!.
G.f. for k-th column is given by (1-1/g(x))^(k-1)*g(2x)/g(x).

Examples

			T(3,1)=9 because B_3 is generated by {t,s1,s2} where t^2=s1^2=s2^2=(s1 s2)^3=(t s1)^4=(t s2)^2=1.
The 9 elements which only use 2 generators are {s1 s2, s1 s2 s1, s2 s1, s2 t, t s1, s1 t s1, s1 t s1 t, s1 t, t s1 t}.
Triangle starts:
1;
1, 1;
5, 2, 1;
35, 9, 3, 1;
309, 56, 14, 4, 1;
...
		

Crossrefs

For the similar sequence in type D, see A112226.

Programs

  • Maple
    f:=proc(n,k) local gx; gx:=add(i!*x^i,i=0..n); coeff(series((1-1/gx)^k*subs(x=2*x,gx)/gx,x,n+1),x,n); end:
  • Mathematica
    nmax = 9;
    g[x_] = Sum[n!*x^n, {n, 0, nmax}];
    gf[x_, t_] = g[2*x]/(t + (1 - t)*g[x]);
    T[n_, k_] := SeriesCoefficient[gf[x, t], {x, 0, n}] // SeriesCoefficient[#, {t, 0, k}]&;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)

Formula

G.f.: g(2x)/(t+(1-t)g(x)) where g(x) = sum_{n>=0} n! x^n.