A109385 Maximum number of prime implicants of a symmetric function of n Boolean variables.
1, 2, 6, 13, 32, 92, 218, 576, 1698, 4300, 11770, 34914, 91105, 254438, 759488, 2030618, 5746274, 17189858, 46698068, 133334440, 399479982, 1099206284, 3159208516, 9470895658, 26313455375, 76003857800, 227935595004, 638304618462, 1850933165704, 5551816202580
Offset: 1
Examples
a(10) = 4300 because the symmetric function S_{1,2,4,5,6,7,9,10}(x_1,...,x_{10}) has 90+4200+10 prime implicants.
References
- Yoshihide Igarashi, An improved lower bound on the maximum number of prime implicants, Transactions of the IECE of Japan, E62 (1979), 389-394.
- A. P. Vikulin, Otsenka chisla kon"iunktsii v sokrashchennyh DNF [An estimate of the number of conjuncts in reduced disjunctive normal forms], Problemy Kibernetiki 29 (1974), 151-166.
Programs
-
Mathematica
b[m_, n_] := If[m < 0, 0, Multinomial[Floor[m/2], Ceiling[m/2], n - m] + b[Ceiling[m/2] - 2, n]]; a[n_] := Multinomial[Floor[n/3], Floor[(n + 1)/3], Floor[(n + 2)/3]] + b[Floor[(n - 4)/3], n] + b[Floor[(n - 5)/3], n]; Table[a[n], {n, 35}]
Extensions
Extended by T. D. Noe using the Mma program, Jan 15 2012
Comments