A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.
1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1
Examples
a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384 (terms 1..1000 from T. D. Noe)
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).
Programs
-
Mathematica
Table[Denominator[EulerPhi[n]/n], {n, 81}] (* Alonso del Arte, Sep 03 2011 *)
-
PARI
a(n)=n/gcd(n,eulerphi(n)) \\ Charles R Greathouse IV, Feb 20 2013
-
PARI
A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947 A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557 A109395(n) = denominator(A173557(n)/A007947(n)); \\ Antti Karttunen, Feb 09 2019
Formula
a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Comments