cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109429 Rearrange terms of A050376 so that a(2^j)=2^(2^j) for j>=0.

Original entry on oeis.org

2, 4, 3, 16, 5, 7, 9, 256, 11, 13, 17, 19, 23, 25, 29, 65536, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 4294967296, 89, 97
Offset: 1

Views

Author

Thomas Ordowski, Aug 26 2005

Keywords

Comments

A073904(2^n) is the product of the first n members of this sequence. Generalization: for any prime p, we may consider the analogous permutation of numbers of the form q^(p^k) such that a(p^j)=p^(p^j); then A073904(p^n)=(product of the first n members)^(p-1). - David Wasserman and Thomas Ordowski. Corrected by Thomas Ordowski, Jun 06 2015

Examples

			Numbers: 2, 3, 2^2, 5, 7, 3^2, 11, 13, 2^(2^2), 17, ..., 2^(2^3), ...
Permutation: 2, 2^2, 3, 2^(2^2), 5, 7, 3^2, 2^(2^3), 11, 13, 17, ...
If n=4 then A073904(16)=2*4*3*16=384.
		

Crossrefs

Cf. A050376.

Formula

a(2^j)=2^(2^j). So a(1)=2 for j=0; a(2)=4 for j=1; a(4)=16 for j=2.
A073904(2^n)=2*4*3*...*a(n) for every n.

Extensions

Definition edited by N. J. A. Sloane, Oct 27 2014
More terms from Thomas Ordowski, Jun 05 2015