A109429 Rearrange terms of A050376 so that a(2^j)=2^(2^j) for j>=0.
2, 4, 3, 16, 5, 7, 9, 256, 11, 13, 17, 19, 23, 25, 29, 65536, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 4294967296, 89, 97
Offset: 1
Keywords
Examples
Numbers: 2, 3, 2^2, 5, 7, 3^2, 11, 13, 2^(2^2), 17, ..., 2^(2^3), ... Permutation: 2, 2^2, 3, 2^(2^2), 5, 7, 3^2, 2^(2^3), 11, 13, 17, ... If n=4 then A073904(16)=2*4*3*16=384.
Crossrefs
Cf. A050376.
Formula
a(2^j)=2^(2^j). So a(1)=2 for j=0; a(2)=4 for j=1; a(4)=16 for j=2.
A073904(2^n)=2*4*3*...*a(n) for every n.
Extensions
Definition edited by N. J. A. Sloane, Oct 27 2014
More terms from Thomas Ordowski, Jun 05 2015
Comments