cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A109489 Value of Product[k/sd(k,2),k=1..n], where sd(k,b) is the sum of the digits of k represented in base b.

Original entry on oeis.org

1, 2, 3, 12, 30, 90, 210, 1680, 7560, 37800, 138600, 831600, 3603600, 16816800, 63063000, 1009008000, 8576568000, 77189112000, 488864376000, 4888643760000, 34220506320000, 250950379680000, 1442964683160000, 17315576197920000
Offset: 1

Views

Author

John W. Layman, Jun 29 2005

Keywords

Comments

It appears that Product[k/sd(k,b),k=1..n] is an integer for all integers n>0 and b>1. Is this known or easy to prove?
It is not true! The product is not an integer for b=2 and n=422 (it has a denominator of 5). B-file contains all terms before that. - Robert Israel, Jan 21 2018

Examples

			The base 2 representations of 1,2,3,4 are 1,10,11,100 so a(4)=(1/1)(2/1)(3/2)(4/1)=12.
		

Crossrefs

Programs

  • Maple
    P:= 1: A[1]:= P:
    for n from 2 to 100 do
      P:= P*n/convert(convert(n,base,2),`+`);
      A[n]:= P;
    od:
    seq(A[i],i=1..100); # Robert Israel, Jan 21 2018
  • PARI
    a(n) = prod(k=1, n, k/hammingweight(k)); \\ Michel Marcus, Jul 10 2014
Showing 1-1 of 1 results.