cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109509 Number of hierarchical orderings with at least 2 elements on each level for n unlabeled elements. Unlabeled analog of A097236.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 47, 88, 152, 279, 486, 876, 1539, 2744, 4824, 8551, 15023, 26503, 46509, 81747, 143210, 251007, 438915, 767403, 1339487, 2336955, 4071906, 7090589, 12333894, 21440241, 37235775, 64624267, 112067176, 194209732, 336313393, 582019000
Offset: 0

Views

Author

Thomas Wieder, Jun 30 2005

Keywords

Comments

A109509 is the Euler transform of the right-shifted Fibonacci numbers A000045.

Examples

			Let * denote an unlabeled element.
Let | denote a delimiter between two hierarchies. E.g., for n=3 we have in **|* two hierarchies (each with one level only).
Let : denote a higher level (within a single hierarchy). E.g., for n=6 we have in ***:**:* a single hierarchy distributed over three levels.
Then a(5) = 4 because we have *****, ***:**, **:***, **|***.
		

Crossrefs

Programs

  • Maple
    SeqSetSetxU := [T, {T=Set(S),S=Sequence(U,card>=1),U=Set(Z,card>=2)},unlabeled]; seq(count(SeqSetSetxU,size=j),j=1..25); # where x is an integer 1, 2, 3,... # x=2 gives 2 individuals per level.
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k-1], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 06 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n-1)))

Formula

a(n) ~ phi^(n-1/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(phi/10 - 1/2 + 2*5^(-1/4)*sqrt(n/phi) + s), where s = Sum_{k>=2} 1/((phi^(2*k) - phi^k - 1)*k) = 0.189744799982532613329750744326543900883761701983311537716143669... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Extensions

Edited with more terms from Franklin T. Adams-Watters, Oct 21 2009