cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109626 Consider the array T(n,m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from lower left to upper right.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 5, 2, 1, 2, 1, 1, 6, 5, 4, 3, 2, 1, 1, 7, 3, 5, 3, 3, 1, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 9, 4, 7, 3, 1, 4, 3, 2, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 11, 5, 3, 2, 7, 6, 5, 1, 3, 1, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 13, 6, 11, 10, 9, 4, 1, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			Table begins:
\k...0...1...2...3...4...5...6...7...8...9..10..11..12..13
n\
 1|  1   1   1   1   1   1   1   1   1   1   1   1   1   1
 2|  1   2   1   2   2   2   1   2   2   2   1   2   1   2
 3|  1   3   3   1   3   3   3   3   3   3   3   3   1   3
 4|  1   4   2   4   3   4   4   4   1   4   4   4   3   4
 5|  1   5   5   5   5   1   5   5   5   5   4   5   5   5
 6|  1   6   3   2   3   6   6   6   3   4   6   6   6   6
 7|  1   7   7   7   7   7   7   1   7   7   7   7   7   7
 8|  1   8   4   8   2   8   4   8   7   8   8   8   4   8
 9|  1   9   9   3   9   9   3   9   9   1   9   9   6   9
10|  1  10   5  10  10   2   5  10  10  10   3  10   5  10
11|  1  11  11  11  11  11  11  11  11  11  11   1  11  11
12|  1  12   6   4   9  12   4  12  12   8   6  12   6  12
13|  1  13  13  13  13  13  13  13  13  13  13  13  13   1
14|  1  14   7  14   7  14  14   2   7  14  14  14  14  14
15|  1  15  15   5  15   3  10  15  15  10  15  15   5  15
16|  1  16   8  16   4  16   8  16  10  16   8  16  12  16
		

Crossrefs

Diagonals: A000027 (main), A111614 (first upper), A111627 (2nd), A111615 (3rd), A111618 (first lower), A111623 (2nd).
Other diagonals: A005408 (T(2*n-1, n)), A111626, A111627, A111628, A111629, A111630.

Programs

  • Mathematica
    f[n_]:= f[n]= Block[{a}, a[0] = 1; a[l_]:= a[l]= Block[{k = 1, s = Sum[ a[i]*x^i, {i,0,l-1}]}, While[ IntegerQ[Last[CoefficientList[Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j,0,32}]];
    T[n_, m_]:= f[n][[m]];
    Flatten[Table[T[i,n-i], {n,15}, {i,n-1,1,-1}]]
  • PARI
    A109626_row(n, len=40)={my(A=1, m); vector(len, k, if(k>m=1, while(denominator(polcoeff(sqrtn(O(x^k)+A+=x^(k-1), n), k-1))>1, m++); m, 1))} \\ M. F. Hasler, Jan 27 2025

Formula

When m is prime, column m is T(n,m) = n/gcd(m, n) = numerator of n/(n+m). - M. F. Hasler, Jan 27 2025