A109641 Composite n such that binomial(3n, n) == 3^k (mod n) for some integer k > 0.
4, 9, 15, 25, 27, 34, 36, 49, 51, 57, 63, 68, 75, 81, 87, 93, 111, 121, 125, 129, 132, 138, 141, 153, 155, 159, 169, 177, 237, 249, 258, 261, 264, 267, 274, 276, 279, 289, 298, 303, 324, 339, 343, 357, 361, 375, 381, 387, 393, 411, 417, 423, 441, 447, 453, 477
Offset: 1
Keywords
Examples
Binomial(3*34,34) == 3^6 (mod 34), so 34 is a member.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
filter:= proc(n) local p,m,k,t; if isprime(n) then return false fi; p:= padic:-ordp(n,3); p:= p + numtheory:-order(3, n/3^p); m:= binomial(3*n,n) mod n; t:= 1; for k from 1 to p do t:= t*3 mod n; if t = m then return true fi; od: false end proc; select(filter, [$2..1000]); # Robert Israel, Nov 12 2017
-
Mathematica
okQ[n_] := Module[{p, m}, If[PrimeQ[n], Return[False]]; p = IntegerExponent[n, 3]; p = p + MultiplicativeOrder[3, n/3^p]; m = Mod[Binomial[3n, n], n]; AnyTrue[Range[p], m == PowerMod[3, #, n]&]]; Select[Range[2, 500], okQ] (* Jean-François Alcover, Mar 27 2019, after Robert Israel *)
Extensions
Corrected and extended by Max Alekseyev, Sep 13 2009
Edited by Max Alekseyev, Sep 20 2009
Comments