cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109653 Sequence and first differences include all prime numbers exactly once.

Original entry on oeis.org

2, 5, 12, 23, 36, 53, 72, 101, 132, 169, 210, 253, 300, 359, 420, 487, 558, 631, 710, 793, 882, 979, 1082, 1189, 1298, 1411, 1538, 1669, 1806, 1945, 2094, 2245, 2402, 2565, 2732, 2905, 3084, 3265, 3456, 3649, 3846, 4045, 4256, 4479, 4706, 4935, 5168, 5407
Offset: 2

Views

Author

Eric Angelini, Aug 30 2005

Keywords

Comments

Sequence and first differences:
2 5 12 23 36 53 72 101 132 169 210 253 300 359 420...
.3.7.11.13.17.19.29...31..37..41..43..47..59..61...

Examples

			All prime numbers appear once and only once, either in the sequence itself or in the first differences.
		

Crossrefs

Programs

  • Maple
    A109653diff :=proc(n)
        option remember ;
        if n = 2 then
            3;
        else
            for pidx from 1 do
                fnd := false;
                p := ithprime(pidx) ;
                for i from 2 to n-1 do
                    if procname(i) = p then
                        fnd := true;
                    end if;
                end do:
                for i from 2 to n do
                    if A109653(i) = p then
                        fnd := true;
                    end if;
                end do:
                if not fnd then
                    return p;
                end if;
            end do:
        end if;
    end proc:
    A109653 :=proc(n)
        if n = 2 then
            2 ;
        else
            procname(n-1)+A109653diff(n-1) ;
        end if;
    end proc:
    seq(A109653(n),n=2..80) ; # R. J. Mathar, Nov 05 2024
  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = {1}; d = 3; k = 2; Do[ While[ Position[a, d] != {}, d += 2 ]; k = k + d; d = NextPrim[d]; a = Append[a, k], {n, 47} ]; a (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Sep 28 2005