cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109712 UnitarySigmaUnitaryPhi(n) or USUP(n).

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 6, 9, 8, 12, 10, 10, 12, 18, 8, 17, 16, 24, 18, 20, 12, 30, 22, 18, 24, 36, 26, 30, 28, 24, 30, 33, 20, 48, 24, 40, 36, 54, 24, 36, 40, 36, 42, 50, 32, 66, 46, 34, 48, 72, 32, 60, 52, 78, 40, 54, 36, 84, 58, 40, 60, 90, 48, 65, 48, 60, 66, 80, 44, 72, 70, 72, 72, 108, 48, 90, 60, 72, 78, 68
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 08 2005

Keywords

Comments

a(n) is defined as follows. If n = Product p_i^r_i then a(n) = UnitarySigma(2^r_1) *UnitaryPhi(n/2^r_1) = (2^r_1+1)*Product(p_i^r_i-1), 2

Examples

			a(2^4*7^2) = UnitarySigma(2^4) * UnitaryPhi(7^2) = 17*48 = 816.
		

Crossrefs

Programs

  • Maple
    A109712 := proc(n)
        local a ;
        a := 1;
        if n > 1 then
            for pe in ifactors(n)[2] do
                if op(1,pe) = 2 then
                    a := a*(1+op(1,pe)^op(2,pe)) ;
                else
                    a := a*(op(1,pe)^op(2,pe)-1) ;
                end if;
            end do:
        end if;
        a ;
    end proc:
    seq(A109712(n),n=1..100) ; # R. J. Mathar, Sep 04 2018
  • Mathematica
    A034448[n_] := Sum[If[GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; A047994[n_] := Times @@ (Power @@@ FactorInteger[n] - 1); A006519[n_] := 2^IntegerExponent[n, 2]; a[1] = 1; a[n_ /; IntegerQ[Log[2, n]]] := n+1; a[n_] := A034448[ A006519[n] ]*A047994[ n/A006519[n] ]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 03 2013 *)
    f[p_, e_] := p^e - 1; f[2, e_] := 2^e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 17 2022 *)

Formula

a(n) = A034448(t)*A047994(n/t) where t = A006519(n).
Multiplicative with a(2^e) = 1+2^e, a(p^e) = p^e-1 for primes p>2, e>0. - R. J. Mathar, Jun 02 2011
Sum_{k=1..n} a(k) ~ c * n^2, where c = (7/10) * Product_{p prime} (1 - 1/(p*(p+1))) = (7/10) * A065463 = 0.493109... . - Amiram Eldar, Nov 17 2022