cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008427 Theta series of {D_8}* lattice.

Original entry on oeis.org

1, 16, 368, 448, 3184, 2016, 10304, 5504, 25712, 12112, 46368, 21312, 89152, 35168, 126592, 56448, 205936, 78624, 278576, 109760, 401184, 154112, 490176, 194688, 719936, 252016, 808864, 327040
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.

Crossrefs

Programs

  • Mathematica
    terms = 28; s = EllipticTheta[3, 0, q]^8 + EllipticTheta[2, 0, q]^8 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017 *)

Formula

G.f.: (theta_3(q))^8 + (theta_2(q))^8.

A109773 Expansion of eighth root of theta series of D_8 lattice.

Original entry on oeis.org

1, 14, -544, 34496, -2512254, 197053696, -16194254272, 1374326128896, -119403428951808, 10561444878559246, -947458249960057024, 85971010094510200128, -7874673015172093889024, 727016151987267244001536, -67573426491012510177925760, 6317185611058637805840976640
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Aug 13 2005

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 16; f[q_] = LatticeData["D8", "ThetaSeriesFunction"][-I Log[q]/Pi]; s = Series[f[q]^(1/8), {q, 0, 2 terms}]; CoefficientList[s, q^2][[1 ;; terms]] // Round (* Jean-François Alcover, Jul 07 2017 *)
    CoefficientList[Series[((EllipticTheta[3, 0, Sqrt[x]]^8 + EllipticTheta[4, 0, Sqrt[x]]^8)/2)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 10 2017 *)

Formula

a(n) ~ -(-1)^n * c * d^n / n^(9/8), where d = -1/EllipticNomeQ(-3+2*sqrt(2)) = 101.05698591144255836558034070124390358691255555299851256465840129800034600429... and c = 0.11312909975079493828483346745366595624358550348529207605517154972... - Vaclav Kotesovec, Dec 11 2017, updated Mar 16 2024
Showing 1-2 of 2 results.