A108810
Self-describing primes.
Original entry on oeis.org
10153331, 10173133, 10233221, 10311533, 10322321, 12103331, 12163133, 12163331, 12193133, 12311933, 12313319, 15103133, 15233221, 15311633, 15331931, 15333119, 16153133, 16153331, 16173133, 16331531, 16331831, 16333117, 17143331, 17311633, 17331031, 18103133
Offset: 1
E.g. 10153331 reads "One 0, one 5, three 3's and three 1's", which does indeed describe 10153331.
- Computed by Jud McCranie.
- Mudge, 'Numbers Count', Personal Computer World, Jun 15 1996
A173101
Self-describing semiprimes.
Original entry on oeis.org
22, 10183133, 10183331, 10213223, 10313317, 10322123, 10331831, 10331931, 10333117, 12183133, 12183331, 12193331, 12311033, 12311633, 12311833, 12313318, 12331031, 12333115, 12333119, 14103331, 14153331, 14163133, 14173133, 14183133, 14193331, 14311533, 14311633
Offset: 1
a(1) = 22 because "22" does indeed consist of "two 2's" and 22 = 2 * 11 is semiprime. a(4) = 10213223 because 10213223 consists of one "0", two 1's, three 2's, and two 3's; and 10213223 = 41 * 249103 is semiprime.
Original entry on oeis.org
10153331, 20326464, 30559685, 40871218, 51193539, 63296870, 75460003, 87623334, 99816467, 112128400, 124441719, 139544852, 154778073, 170089706, 185421637, 200754756, 216907889, 233061220, 249234353, 265565884, 281897715
Offset: 1
a(7) = 10153331 + 10173133 + 10233221 + 10311533 + 10322321 + 12103331 + 12163133 = 75460003 is prime. a(21) = 10153331 + 10173133 + 10233221 + 10311533 + 10322321 + 12103331 + 12163133 + 12163331 + 12193133 + 12311933 + 12313319 + 15103133 + 15233221 + 15311633 + 15331931 + 15333119 + 16153133 + 16153331 + 16173133 + 16331531 + 16331831.
Showing 1-3 of 3 results.
Comments