cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225903 The smallest number beginning with n whose distinct prime factors are the first n primes.

Original entry on oeis.org

16, 24, 30, 420, 50820, 60060, 7147140, 87297210, 9369900540, 103515091680, 11030826957150, 126152548291770, 13387011595197240, 143910374648370330, 15372244564712285250, 162945792385950223650, 17304843151387913751630, 1876614101750511535732320
Offset: 1

Views

Author

Keywords

Comments

a(3)=30 is the only term with fewer than 1000 digits whose superscripts are all 1.
Though counterexamples are possible, it appears that the sequence is strictly increasing (confirmed for n < 350, and counterexamples are increasingly unlikely statistically thereafter).

Examples

			For a(6), the number 60060 = 2^2 * 3 * 5 * 7 * 11 * 13. The only number smaller whose factors contains the first 6 primes is 30030, which does not begin with 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n], ba = Product[Prime@k, {k, n}], d = IntegerDigits@ n, mu = 1}, While[d != Take[IntegerDigits[mu*ba], Length@d] || Max[ First /@ FactorInteger[mu]] > p, mu++]; mu*ba]; Array[a, 20] (* Giovanni Resta, May 27 2013 *)
  • R
    library(gmp); primes<-function(n) { x=as.bigz(rep(2,n)); for(i in 2:n) x[i]=nextprime(x[i-1]); as.vector(x[1:n]) }
    newmin<-function(b,d) { if(d>length(b)) return();
        while(1) { b[d]=b[d]+1; if((x=prod(pr^b))>v) return()
            if(substr(x,1,ndig(i))==as.character(i)) { v<<-x; return() }
            if(b[d]==2) {b[d]=1; newmin(b,d+1); b[d]=2 }
            newmin(b,d+1)
        }
    }
    y=as.bigz(rep(0,50))
    for(i in 1:50) {
        pr=primes(i); b=rep(1,i)
        while(substr((v=prod(pr^b)),1,ndig(i))!=as.character(i)) b[1]=b[1]+1;
        while(b[1]>1) { b[1]=b[1]-1; newmin(b,2) }
        if(y[i]>v) y[i]=v;
    }

A109865 Consider Pi = 3.1415926535897932384626433832795... On taking the absolute successive differences between successive digits ignoring the decimal point one gets the array shown in Comments (below). Sequence contains the first term of each row (the first diagonal).

Original entry on oeis.org

3, 2, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0
Offset: 0

Views

Author

Amarnath Murthy, Jul 09 2005

Keywords

Comments

3...1...4...1...5...9...2...6...5...3...5...8...9...7...9...3...2...3...8...4
..2...3...3...4...4...7...4...1...2...2...3...1...2...2...6...1...1...5...4
....1...0...1...0...3...3...3...1...0...1...2...1...0...4...5...0...4...1
......1...1...1...3...0...0...2...1...1...1...1...1...4...1...5...4...3
........0...0...2...3...0...2...1...0...0...0...0...3...3...4...1...1
..........0...2...1...3...2...1...1...0...0...0...3...0...1...3...0
............2...1...2...1...1...0...1...0...0...3...3...1...2...3
Call this the Absolute Successive Difference function of an irrational number k denoted by ASDE(k). Then ASDE(Pi) = 3.211002110001... Subsidiary sequences: For e, phi, 2^(1/2), 3^(1/2), Euler's constant and other important irrational numbers can be included.

Crossrefs

Cf. A000796.

Programs

  • Maple
    Digits := 200: asde := proc(n,L) local b,L2,i,j; b := L ; for i from 1 to n do L2 := [] ; for j from 1 to nops(b)-1 do L2 := [op(L2),abs(op(j+1,b)-op(j,b))] ; od: b := L2 ; od: op(1,b) ; end: A109864 := proc(n) local piL,i ; piL := [] ; for i from 1 to n+1 do piL := [op(piL), floor(Pi*10^(i-1)) mod 10] ; od: asde(n,piL) ; end: seq( A109864(n),n=0..100) ; # R. J. Mathar, Feb 11 2008
  • Mathematica
    First[#]&/@Module[{nn=110,pi},{pi=RealDigits[Pi,10,nn][[1]]};NestList[ Abs[ Differences[ #]]&,pi,nn-1]] (* Harvey P. Dale, Jun 14 2016 *)

Extensions

More terms from R. J. Mathar, Feb 11 2008
Definition clarified by Harvey P. Dale, Jun 14 2016

A088277 Let f(n) be the n-th palindrome in A089743. Then a(n) is the smallest palindromic prime that begins with f(n).

Original entry on oeis.org

11, 2, 3, 5, 7, 919, 11, 33533, 77377, 9902099, 101, 1114111, 1212121, 131, 1411141, 151, 1611161, 1712171, 181, 191, 303050303, 313, 32323, 3331333, 3439343, 353, 3635363, 373, 383, 3931393, 7073707, 7177717, 727, 737171737, 74747, 757
Offset: 1

Views

Author

Amarnath Murthy, Sep 29 2003

Keywords

Examples

			f(7) = 33, the 7th palindrome that is the beginning of a palindromic prime, so a(7) = A109864(33) = 33533.
		

Crossrefs

Extensions

Edited and extended by David Wasserman, Jul 28 2005
Showing 1-3 of 3 results.