A038808 Palindromic numbers which are the difference of two positive cubes.
0, 7, 919, 999, 25352, 27872, 31213, 37973, 45054, 53135, 54845, 56765, 60606, 62426, 63936, 74347, 75357, 78687, 86868, 90909, 98289, 121121, 757757, 982289, 999999, 1063601, 1081801, 1188811, 1197911, 1366631, 1393931, 1507051, 1644461, 1727271, 1889881
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] > FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]]]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]]]]]]; t1 = NestList[ NextPalindrome, 0, 2800]; t2 = Select[ Union[Flatten[Table[n^3 - m^3, {n, 900}, {m, n - 1}]]], # < 2*10^6 &]; Intersection[t1, t2] (* Robert G. Wilson v, Jul 14 2005 *)
Extensions
More terms from Robert G. Wilson v, Jul 14 2005
Comments