cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109902 Happy primes of the form a*10^k + b with single-digit a and b, a > 0, k > 0.

Original entry on oeis.org

13, 19, 23, 31, 79, 97, 103, 109, 409, 709, 907, 1009, 2003, 3001, 9001, 9007, 10009, 40009, 70009, 90001, 90007, 100003, 200003, 400009, 900001, 900007, 1000003, 2000003, 7000009, 20000003, 30000001, 400000009, 1000000009, 4000000009, 9000000001
Offset: 1

Views

Author

Paul Muljadi, Jun 22 2007

Keywords

Comments

The subset of numbers of A035497 with the internal digits in the decimal representation all zero.
A number is in this sequence if and only if it is a prime of the form a00...00b, where (a,b) is one of (1,3), (1,9), (2,3), (3,1), (4,9), (7,9), (9,1), or (9,7). - Nathaniel Johnston, Apr 30 2011

Crossrefs

Cf. A035497.

Programs

  • Maple
    A003132 := proc(n) local digs,i ; digs := convert(n,base,10) ; add( (op(i,digs))^2,i=1..nops(digs)) ; end: isA035497 := proc(n) local nItr ; nItr := n ; if isprime(n) then while true do if nItr = 0 or nItr=4 or nItr = 16 or nItr = 20 or nItr = 37 or nItr = 42 or nItr =58 or nItr =89 or nItr = 145 then RETURN(false) ; elif nItr = 1 then RETURN(true) ; fi ; nItr := A003132(nItr) ; od ; else false ; fi ; end: isA109902 := proc(n) local digs,d ; if isprime(n) and n > 9 then digs := convert(n,base,10) ; for d from 2 to nops(digs)-1 do if op(d,digs) <> 0 then RETURN(false) ; fi ; od ; RETURN(isA035497(n)) ; else RETURN(false) ; fi ; end: for i from 1 to 20000 do p := ithprime(i) : if isA109902(p) then printf("%d,",p) ; fi ; od:
    diglim:=20: dig:=[[1,3],[1,9],[2,3],[3,1],[4,9],[7,9],[9,1],[9,7]]: for k from 1 to diglim do for m from 1 to 8 do n:=dig[m][1]*10^k + dig[m][2]: if(isprime(n))then printf("%d, ",n): fi:od:od: # Nathaniel Johnston, Apr 30 2011
  • Mathematica
    Select[Sort[Flatten[With[{ab={{1,3},{1,9},{2,3},{3,1},{4,9},{7,9},{9,1},{9,7}}},Table[FromDigits[Join[PadRight[{ab[[n,1]]},i,0],{ab[[n,2]]}]],{n,8},{i,9}]]]],PrimeQ] (* Harvey P. Dale, May 31 2013 *)

Extensions

Edited by R. J. Mathar, Jul 13 2007
a(24) - a(35) from Nathaniel Johnston, Apr 30 2011