cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A109924 Least palindromic multiple of concatenation 123...n.

Original entry on oeis.org

1, 252, 8118, 28382, 536797635, 6180330816, 85770307758, 2889123219882, 535841353148535, 135444949494445310, 1522312136776312132251, 2111913320628668260233191112, 6690072525779588859775252700966, 202511080654222947749222456080115202, 538412926804799527505725997408629214835
Offset: 1

Views

Author

Amarnath Murthy, Jul 16 2005

Keywords

Comments

When n is a multiple of 10, any multiple of 123...n has trailing zeros, therefore it cannot be palindromic. The terms listed as a(10k) are therefore the least palindromic multiples with "invisible leading zeros allowed", or equivalently, trailing zeros ignored.
Subsequence of A020485.

Examples

			123*j is not palindromic for j < 66 and 123*66 = 8118, hence a(3) = 8118.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, p = FromDigits[ Flatten[ IntegerDigits /@ Range[n]]]}, While[ If[ Mod[p, 10] == 0, p/=10]; While[k*p != FromDigits[ Reverse[ IntegerDigits[k*p]]], k++ ]]; k*p]; Table[ f[n], {n, 11}] (* Robert G. Wilson v, Jul 19 2005 *)
  • PARI
    intreverse(n) = local(d, rev); rev=0; while(n>0, d=divrem(n, 10); n=d[1]; rev=10*rev+d[2]);
    {s="";for(n=1,10,s=concat(s,n);k=eval(s);if(n%10==0,m=0, j=1;while((m=k*j)!=intreverse(m),j++));print1(m,","))}
    
  • PARI
    A109924(n)={ n=eval(concat(vector(n,i,Str(i))));forstep(i=n/10^valuation(n,10),9e99,n/10^valuation(n,10), (m=Vec(Str(i)))==vecextract(m,"-1..1")&return(i*10^valuation(n,10)))} \\ M. F. Hasler, Jun 19 2011

Extensions

Edited and extended (a(5) to a(10)) by Klaus Brockhaus, Jul 19 2005
a(10)-a(11) from Robert G. Wilson v, Jul 19 2005
Definition of a(10k) clarified by M. F. Hasler, Jun 19 2011.
a(12)-a(14) from Giovanni Resta, Sep 22 2019
a(15) from Giovanni Resta, Sep 24 2019
Showing 1-1 of 1 results.