cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109984 a(n) = number of steps in all Delannoy paths of length n.

Original entry on oeis.org

0, 5, 44, 321, 2184, 14325, 91860, 580097, 3622928, 22437477, 138049020, 844881345, 5148375192, 31258302933, 189199514532, 1142148091905, 6878977097760, 41347348295877, 248082231062988, 1486116788646977
Offset: 0

Views

Author

Emeric Deutsch, Jul 07 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).

Examples

			a(1)=5 because in the 3 (=A001850(1)) Delannoy paths of length 1, namely D, NE and EN, we have altogether five steps.
		

Crossrefs

Programs

  • Haskell
    a109984 = sum . zipWith (*) [0..] . a109983_row
    -- Reinhard Zumkeller, Nov 18 2014
  • Maple
    a:=n->add(k*binomial(n,2*n-k)*binomial(k,n),k=n..2*n): seq(a(n),n=0..23);
  • Mathematica
    CoefficientList[Series[x*(5-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)

Formula

a(n) = sum_{k=0..2n} k*A109983(k).
a(n) = sum_{k=n..2*n} k*binomial(n, 2*n-k)*binomial(k, n).
G.f.: z*(5-z)/(1-6*z+z^2)^(3/2).
Recurrence: (n-1)*(2*n-9)*a(n) = 4*(3*n^2-15*n+7)*a(n-1) - (n-1)*(2*n-7)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n*sqrt(n)/(4*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012