A109984 a(n) = number of steps in all Delannoy paths of length n.
0, 5, 44, 321, 2184, 14325, 91860, 580097, 3622928, 22437477, 138049020, 844881345, 5148375192, 31258302933, 189199514532, 1142148091905, 6878977097760, 41347348295877, 248082231062988, 1486116788646977
Offset: 0
Keywords
Examples
a(1)=5 because in the 3 (=A001850(1)) Delannoy paths of length 1, namely D, NE and EN, we have altogether five steps.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
Programs
-
Haskell
a109984 = sum . zipWith (*) [0..] . a109983_row -- Reinhard Zumkeller, Nov 18 2014
-
Maple
a:=n->add(k*binomial(n,2*n-k)*binomial(k,n),k=n..2*n): seq(a(n),n=0..23);
-
Mathematica
CoefficientList[Series[x*(5-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
Formula
a(n) = sum_{k=0..2n} k*A109983(k).
a(n) = sum_{k=n..2*n} k*binomial(n, 2*n-k)*binomial(k, n).
G.f.: z*(5-z)/(1-6*z+z^2)^(3/2).
Recurrence: (n-1)*(2*n-9)*a(n) = 4*(3*n^2-15*n+7)*a(n-1) - (n-1)*(2*n-7)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n*sqrt(n)/(4*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012
Comments