A110002 Palindromes whose perfect deficiency (A109883) is also palindromic.
1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 44, 222, 292, 414, 646, 717, 848, 979, 27072, 28882, 45954, 74247, 90109, 96569, 118811, 2376732, 5136315, 5185815, 5266625, 5635365, 5684865, 6344436, 7424247, 7481847, 7484847, 7929297, 9858589, 12333321, 21922912, 32255223
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..101 (all terms < 10^14)
Programs
-
Mathematica
subtract = If[ #1 < #2, Throw[ #1], #1 - #2]&;d[n_] := Catch @ Fold[subtract, n, Divisors @ n];Select[Range[10000000],PalindromeQ[#]&&PalindromeQ[d[#]]&] (* James C. McMahon, Mar 31 2024 *)
-
Python
# uses imports, function in A109883 from itertools import count, islice, product def ispal(n): return (s:=str(n)) == s[::-1] def pals(): # generator of palindromes digits = "0123456789" yield from map(int, digits) for d in count(2): for f in "123456789": for p in product(digits, repeat=d//2-1): left = f + "".join(p); right = left[::-1] for mid in [[""], digits][d%2]: yield int(left + mid + right) def agen(): yield from (p for p in pals() if p>0 and ispal(A109883(p))) print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 31 2024
Extensions
a(38) and beyond from Michael S. Branicky, Mar 31 2024