A110022 Primes starting a Cunningham chain of the second kind of length 5.
1531, 6841, 15391, 44371, 57991, 83431, 105871, 145021, 150151, 199621, 209431, 212851, 231241, 242551, 291271, 319681, 346141, 377491, 381631, 451411, 481021, 506791, 507781, 512821, 537811, 588871, 680431, 727561, 749761, 782911, 787711
Offset: 1
Examples
6841 is here because: 6841 through <2p-1> -> 13681-> 27361-> 54721-> 109441 and the chain ends here since 2*109441-1=13*113*149 is composite.
Links
- Chris Caldwell's Prime Glossary, Cunningham chains.
- G. Löh, Long chains of nearly doubled primes, Math. Comp. vol. 53 no. 188 (1989) pp 751-759.
Crossrefs
Programs
-
Maple
isA110022 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p+1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 4 do pitr := 2*pitr-1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr-1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 200000 do p := ithprime(i) ; if isA110022(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008
Extensions
Edited and extended by R. J. Mathar, Jul 23 2008
Comments