cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110079 Numbers n such that sigma(n)=2n-2^d(n) where d(n) is number of positive divisors of n.

Original entry on oeis.org

5, 38, 284, 1370, 2168, 26828, 133088, 1515608, 19414448, 23521328, 25812848, 49353008, 82988756, 103575728, 537394688, 558504608, 921747488, 2651596448, 17517611968, 18249863488, 77792665408, 556915822208
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 03 2005

Keywords

Comments

If 4^m+2^m-1 is prime then n=2^(m-1)*(4^m+2^m-1) is in the sequence because 2n-2^d(n)=2^m*(4^m+2^m-1)-2^(m*2)=2^m* (4^m-1)=2^m*(2^m-1)*(2^m+1)=(2^m-1)*(4^m+2^m)=sigma(2^(m-1)) *sigma(4^m+2^m-1)=sigma(2^(m-1)*(4^m+2^m-1))=sigma(n). A110082 gives such terms of this sequence.
a(22) <= 556915822208. a(23) <= 9311639470208. a(24) <= 29297682437888. - Donovan Johnson, Jan 31 2009
a(23) > 6*10^12. - Giovanni Resta, Aug 14 2013

Crossrefs

Cf. A110080-3.

Programs

  • Mathematica
    Do[If[DivisorSigma[1, n] == 2n - 2^DivisorSigma[0, n], Print[n]], {n, 925000000}]

Extensions

a(18)-a(21) from Donovan Johnson, Jan 31 2009
a(22) confirmed by Giovanni Resta, Aug 14 2013