cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110106 a(n) is the number of coverings of 1..n by cyclic words of length 3n, such that each value from 1 to n appears precisely twice. That is, the union of all the letters in all of the words of a given covering is the multiset {1,1,2,2,...,n,n}. Repeats of words are allowed in a given covering.

Original entry on oeis.org

1, 6, 3960, 24151680, 577882166400, 38039350155206400, 5605398331566095462400, 1614162682147590619140096000, 824800497779996439355497811968000
Offset: 0

Views

Author

Marni Mishna, Jul 11 2005

Keywords

Comments

P-recursive.

Examples

			a(1)=6: {123, 132} {112, 233} {113, 322} {133, 122} {123, 123} {132, 132}.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2) * a[n] + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2) * a[n + 1] + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4) * a[n + 2] - 2*a[n + 3] == 0, a[0] == 1, a[1] == 6, a[2] == 3960}, a, {n, 0, 15}] (* Vaclav Kotesovec, Oct 24 2023 *)

Formula

Differential equation satisfied by F(t)=sum a(n) t^(3n)/(3n!) {F(0) = 1, (6*t^2-12*t^5+t^8)*F(t) + (-4*t^6-2+16*t^3)*(d/dt)F(t) + 4*t^4*(d^2/dt^2)F(t)};
recurrence satisfied by a(n): {(40320 + 328752*n + 78732*n^7 + 6561*n^8 + 1816668*n^3 + 1818369*n^4 + 1102248*n^5 + 398034*n^6 + 1063116*n^2)*a(n) + (-161280 - 508608*n - 453600*n^3 - 173340*n^4 - 34992*n^5 - 2916*n^6 - 661104*n^2)*a(n+1) + (12432 + 20070*n + 12114*n^2 + 3240*n^3 + 324*n^4)*a(n+2) - 2*a(n+3), a(1) = 6, a(0) = 1, a(2) = 3960}.
a(n) ~ 2^n * 3^(4*n + 1/2) * n^(4*n) / exp(4*n). - Vaclav Kotesovec, Oct 24 2023