A110113 Diagonal sums of A083856.
0, 1, 2, 3, 5, 9, 17, 34, 71, 154, 346, 802, 1914, 4693, 11800, 30379, 79963, 214925, 589223, 1645994, 4681037, 13541446, 39817560, 118925810, 360577616, 1109158545, 3459636358, 10936941299, 35026082521, 113588037953
Offset: 0
Links
- A. G. Shannon and J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, 21(2) (2015), 35-42.
Programs
-
Maple
T := proc(n, k) local v; option remember; if 0 <= n and k = 0 then v := 0; end if; if 0 <= n and k = 1 then v := 1; end if; if 0 <= n and 2 <= k then v := T(n, k - 1) + n*T(n, k - 2); end if; v; end proc; a := proc(n) local k; add(T(n - k, k), k = 0 .. n); end proc; seq(a(n), n = 0..40); # Petros Hadjicostas, Dec 26 2019
Formula
a(n) = Sum_{k = 0..n} ((1 + sqrt(4*(n - k) + 1))/2)^k / sqrt(4*(n - k) + 1) - ((1 -sqrt(4*(n - k) + 1))/2)^k / sqrt(4*(n - k) + 1). [Corrected by Petros Hadjicostas, Dec 26 2019]
Comments