cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110138 a(n) = ceiling(n/2)^floor(n/2).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 27, 64, 256, 625, 3125, 7776, 46656, 117649, 823543, 2097152, 16777216, 43046721, 387420489, 1000000000, 10000000000, 25937424601, 285311670611, 743008370688, 8916100448256, 23298085122481, 302875106592253, 793714773254144, 11112006825558016
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

a(n) is the number of partitions of [n] such that each block has exactly one odd element: a(5) = 9: 124|3|5, 12|34|5, 12|3|45, 14|23|5, 1|234|5, 1|23|45, 14|25|3, 1|245|3, 1|25|34. - Alois P. Heinz, Jun 01 2023

Crossrefs

Programs

Formula

a(2n) = A110132(2n) = A000312(n).

A363429 Number of set partitions of [n] such that each block has at most one even element.

Original entry on oeis.org

1, 1, 2, 5, 10, 37, 77, 372, 799, 4736, 10427, 73013, 163967, 1322035, 3017562, 27499083, 63625324, 646147067, 1512354975, 16926317722, 40012800675, 489109544320, 1166271373797, 15455199988077, 37134022033885, 530149003318273, 1282405154139046, 19619325078384593
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2023

Keywords

Examples

			a(0) = 1: () the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 5: 123, 12|3, 13|2, 1|23, 1|2|3.
a(4) = 10: 123|4, 12|34, 12|3|4, 134|2, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Bisection gives: A134980 (even part).
Cf. A000110, A110132 (exactly one even), A124421 (at least one even), A363430 (at most one odd).

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m+1)+m*b(n-1, m))
        end:
    a:= n-> (h-> b(n-h, h))(iquo(n, 2)):
    seq(a(n), n=0..30);

Formula

a(n) = Sum_{k=0..ceiling(n/2)} floor(n/2)^k * binomial(ceiling(n/2),k) * Bell(ceiling(n/2)-k).
Showing 1-2 of 2 results.