cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110148 Number of perfect squared rectangles of order n up to symmetries of the rectangle and of its subrectangles if any.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 10, 38, 127, 408, 1375, 4783, 16645, 58059, 203808, 722575
Offset: 1

Views

Author

Tanya Khovanova, Feb 18 2007

Keywords

Comments

A squared rectangle (which may be a square) is a rectangle dissected into a finite number, two or more, of squares. If no two of these squares have the same size the squared rectangle is perfect. The order of a squared rectangle is the number of constituent squares. [Geoffrey H. Morley, Oct 12 2012]

Crossrefs

Cf. A217154 (counts symmetries of any subrectangles as distinct).

Formula

a(n) = A002839(n) + A217152(n) + A217374(n). - Geoffrey H. Morley, Oct 12 2012
a(n) = a(n-1) + A002839(n) + A002839(n-1) + A217152(n) + A217152(n-1). - Geoffrey H. Morley, Oct 12 2012

Extensions

Definition corrected and a(14)-a(19) added by Geoffrey H. Morley, Oct 12 2012