A110164 Expansion of (1-x^2)/(1+2x).
1, -2, 3, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368, -1610612736, 3221225472
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-2).
Programs
-
Mathematica
CoefficientList[Series[(1 - x^2)/(1 + 2x), {x, 0, 33}], x] (* Robert G. Wilson v, Jul 08 2006 *) LinearRecurrence[{-2},{1,-2,3},40] (* Harvey P. Dale, May 10 2023 *)
-
PARI
A110164(n)=if(n>1,3*(-2)^(n-2),1-3*n) \\ M. F. Hasler, Apr 19 2015
Formula
a(n) = 3*(-2)^(n-2) = 3*A122803(n-2) for n >= 2. a(n) = -2 a(n-1) for n >= 3. - M. F. Hasler, Apr 19 2015
E.g.f.: (1/4) - (x/2) + (3/4)*exp(-2*x). - Alejandro J. Becerra Jr., Jan 29 2021
Comments