cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110190 Number of (1,0)-steps on the lines y=0 and y=1 in all Schroeder paths of length 2n (a Schroeder path of length 2n is a path from (0,0) to (2n,0), consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis).

Original entry on oeis.org

0, 1, 5, 24, 116, 568, 2820, 14184, 72180, 371112, 1925380, 10068728, 53023860, 280969560, 1497072132, 8016213960, 43114424308, 232817773640, 1261793848836, 6861179441880, 37421756333172, 204671007577464, 1122275850740996, 6168352091629864, 33977333521770996, 187539324760522728
Offset: 0

Views

Author

Emeric Deutsch, Jul 15 2005

Keywords

Examples

			a(2)=5 because in the 6 (=A006318(2)) Schroeder paths of length 4, namely, HH, HUD, UDH, UDUD, UHD, UUDD, all 5 H-steps are at levels 0 or 1.
		

Crossrefs

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*(1-z-2*z*R+z^2+2*z^2*R+z^2*R^2)/(1-3*z-z*R+z^2+z^2*R)^2: Gser:=series(G,z=0,30): 0,seq(coeff(Gser,z^n),n=1..26);
  • Mathematica
    CoefficientList[Series[x*(1-x-2*x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+2*x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x))^2)/(1-3*x-x*((1-x-Sqrt[1-6*x+x^2])/(2*x))+x^2+x^2*((1-x-Sqrt[1-6*x+x^2])/(2*x)))^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
  • Maxima
    a113127(n):=if n=0 then 1 else if n=1 then 3 else 4*n-2;
    a(n):=sum((k+1)*sum(binomial(n+1,n-k-i)*binomial(n+i,n),i,0,n-k)/(n+1)*a113127(k),k,0,n); /* Vladimir Kruchinin, Mar 13 2016 */
  • PARI
    x = 'x+O('x^66);
    R = (1-x-sqrt(1-6*x+x^2))/(2*x);
    gf = x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2;
    concat([0],Vec(gf))
    \\ Joerg Arndt, May 16 2013
    

Formula

a(n) = Sum_{k=0..n} k*A110189(n,k).
G.f.: x*(1-x-2*x*R+x^2+2*x^2*R+x^2*R^2)/(1-3*x-x*R+x^2+x^2*R)^2, where R = 1+x*R+x*R^2 = (1-x-sqrt(1-6*x+x^2))/(2*x) is the g.f. for the large Schroeder numbers (A006318).
Recurrence: (n+2)*(n+3)*a(n) = (5*n^2+29*n+10)*a(n-1) + (5*n^2-59*n+142)*a(n-2) - (n-6)*(n-5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 3*2^(1/4)*(3+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
G.f. A(x) satisfies x^2*A(x)^2 = (x^4 - 7*x^3 + 12*x^2 - 7*x + 1)*A(x) + (-x^3 + 2*x^2 - x). - Joerg Arndt, May 16 2013
a(n) = Sum_{k=0..n} ((k+1)*Sum_{i=0..n-k} (binomial(n+1,n-k-i)*binomial(n+i,n))/ (n+1)*a113127(k)). - Vladimir Kruchinin, Mar 13 2016