cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110199 a(n) = Sum_{k=0..floor(n/2)} Catalan(k).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 9, 9, 23, 23, 65, 65, 197, 197, 626, 626, 2056, 2056, 6918, 6918, 23714, 23714, 82500, 82500, 290512, 290512, 1033412, 1033412, 3707852, 3707852, 13402697, 13402697, 48760367, 48760367, 178405157, 178405157, 656043857
Offset: 0

Views

Author

Paul Barry, Jul 15 2005

Keywords

Comments

Hankel transform is A166446(n+2). - Paul Barry, Jun 23 2010

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(2*j, j)/(j+1), j=0..n/2): seq(a(n), n=0..36); # Zerinvary Lajos, Apr 30 2007

Formula

G.f.: (1-sqrt(1-4x^2))/((1-x)2x^2);
a(n) = Sum_{k=0..floor(n/2)} binomial(2k, k)/(k+1).
Conjecture: -(n+2)*a(n) + (n+2)*a(n-1) + 4*(n-1)*a(n-2) + 4*(1-n)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
G.f.: 1/x^2 - G(0)/(1-x)/x^2, where G(k)= 1 - x/(1 - x/(1 + x/(1 + x/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013