A110203 a(n) = sum of squares of numbers < 2^n having exactly 3 ones in their binary representation.
0, 0, 49, 535, 3906, 24066, 135255, 717825, 3662848, 18158932, 88043517, 419348475, 1968346446, 9126412278, 41875079155, 190408381765, 858989527020, 3848282308584, 17134038373689, 75866264567775, 334251455152090
Offset: 1
Keywords
Examples
For n=4, the sum of the squares of numbers < 2^4 having exactly 3 ones in their binary digits is: a(4) = 7^2 + 11^2 + 13^2 + 14^2 = 535.
Crossrefs
Programs
-
PARI
{a(n)=polcoeff(x^3*(49-396*x+1140*x^2-1360*x^3+576*x^4)/ ((1-x)^3*(1-2*x)^2*(1-4*x)^3+x*O(x^n)),n)}
Formula
G.f.: x^3*(49-396*x+1140*x^2-1360*x^3+576*x^4)/((1-x)^3*(1-2*x)^2*(1-4*x)^3).
Comments