A110214
Minimal number of knights to cover a cubic board.
Original entry on oeis.org
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jul 17 2005
Illustration for n = 3, 4, 5 ( O = empty field, K = knight ):
n = 3: OOO KKK OOO n = 4: OOOO OKOO OOOO OOOO
...... OKO OKO OKO ...... OOOO OKKK OOOO OOOO
...... OOO OOO OOO ...... OOOO KKKO OOOO OOOO
......................... OOOO OOKO OOOO OOOO
n = 5: 1, 2, 4 and 5 planes empty, 3 plane: OKOKO OKOKO KKKKK KOKOK OOKOO.
This is a 3-dimensional version of
A006075. a(n) =
A110217(n, n, n).
A110215 gives number of inequivalent ways to cover the board using a(n) knights,
A110216 gives total number.
A110219
Cone C(n,m,k) read by planes and rows, for 1 <= k <= m <= n: Total Number of coverings of a k X m X n board using A110217(n,m,k) knights.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 36, 8, 12, 12, 1, 16, 1296, 15, 56, 14, 9, 16, 8, 156, 1, 4, 2916, 6, 24, 8, 3, 4, 2, 6, 47, 2, 8, 38, 888, 1, 1, 6561, 2, 236, 2, 1, 268, 1, 2988, 46, 4, 27, 7
Offset: 1
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jul 17 2005
Cone starts:
1.1...1........1..............1.................1......................
..1,1.4,36....16,1296.........4,2916............1,6561.
......8,12,12.15,..56,14......6,..24,8..........2,.236,.2
...............9,..16,.8,156..3,...4,2,.6.......1,.268,.1,2988
.............................47,...2,8,38,888..46,...4,27,...7,.?
..............................................127,..32,12,...?,....
A110215
Inequivalent coverings of a cubic board with the minimal number of knights.
Original entry on oeis.org
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Jul 17 2005
a(3) = 1, since up to rotations and reflections,
OOO KKK OOO
OKO OKO OKO
OOO OOO OOO is the only covering for n = 3.
A110216 gives total number of solutions.
Showing 1-3 of 3 results.
Comments