cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110235 Triangle read by rows: T(n,k)(1<=k<=n) is the number of peakless Motzkin paths of length n having k (1,0) steps (can be easily translated into RNA secondary structure terminology).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 6, 0, 10, 0, 1, 1, 0, 20, 0, 15, 0, 1, 0, 10, 0, 50, 0, 21, 0, 1, 1, 0, 50, 0, 105, 0, 28, 0, 1, 0, 15, 0, 175, 0, 196, 0, 36, 0, 1, 1, 0, 105, 0, 490, 0, 336, 0, 45, 0, 1, 0, 21, 0, 490, 0, 1176, 0, 540, 0, 55, 0, 1, 1, 0, 196, 0, 1764, 0, 2520, 0
Offset: 1

Views

Author

Emeric Deutsch, Jul 17 2005

Keywords

Comments

Row sums yield A004148. sum(k*T(n,k),k=1..n)=A110236(n).

Examples

			T(5,3)=6 because we have UHDHH, UHHDH, UHHHD, HUHDH, HUHHD and HHUHD, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
1, 0, 6, 0, 1;
0, 6, 0, 10, 0, 1;
1, 0, 20, 0, 15, 0, 1;
0, 10, 0, 50, 0, 21, 0, 1;
1, 0, 50, 0, 105, 0, 28, 0, 1;
0, 15, 0, 175, 0, 196, 0, 36, 0, 1;
1, 0, 105, 0, 490, 0, 336, 0, 45, 0, 1; ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n+k mod 2 = 0 then 2*binomial((n+k)/2,k)*binomial((n+k)/2,k-1)/(n+k) else 0 fi end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • PARI
    T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j*x^(m-j))*x^m/m)+O(x^(n+1))),n,x),k,y)
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Oct 21 2012

Formula

T(n, k) = [2/(n+k)]binomial((n+k)/2, k)*binomial((n+k)/2, k-1).
G.f.: g=g(t, z) satisfies g=1+tzg+z^2*g(g-1).
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * y^k * x^(n-k)] * x^n/n ). - Paul D. Hanna, Oct 21 2012