cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110237 Triangle read by rows: T(n,k) (0 <= k <= ceiling(n/2)-1) is the number of (1,0) steps at level k in all peakless Motzkin paths of length n (can be easily translated into RNA secondary structure terminology).

Original entry on oeis.org

1, 2, 3, 1, 6, 4, 13, 10, 1, 28, 24, 6, 62, 59, 21, 1, 140, 144, 62, 8, 320, 350, 174, 36, 1, 740, 852, 474, 128, 10, 1728, 2077, 1263, 410, 55, 1, 4068, 5072, 3318, 1240, 230, 12, 9645, 12412, 8634, 3608, 835, 78, 1, 23010, 30440, 22314, 10216, 2792, 376, 14
Offset: 1

Views

Author

Emeric Deutsch, Jul 17 2005

Keywords

Comments

Row n has ceiling(n/2) terms. Row sums yield A110236.

Examples

			T(5,1)=10 because in the 8 (=A004148(5)) peakless Motzkin paths of length 5, namely HHHHH, U(H)DHH, U(HH)DH, U(HHH)D, HU(H)DH, HU(HH)D, HHU(H)D and UUHDD (where U=(1,1), H=(1,0) and D=(1,-1)), we have altogether 10 H steps at level 1 (shown between parentheses).
Triangle starts:
   1;
   2;
   3,  1;
   6,  4;
  13, 10,  1;
		

Crossrefs

Programs

  • Maple
    g:=(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/2/z^2: G:=z*g^2/(1-t*z^2*g^2): Gser:=simplify(series(G,z=0,20)): for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 15 do seq(coeff(t*P[n],t^k),k=1..ceil(n/2)) od;
  • Maxima
    T(n,m):=(m+1)*sum((binomial(2*m+2*i+2,i)*sum(binomial(k,n-2*m-k-2*i-1)*binomial(2*m+k+2*i+1,k)*(-1)^(n-k-1),k,0,n-2*m-2*i-1))/(m+i+1),i,0,(n-1)/2-m); /* Vladimir Kruchinin, Mar 07 2016 */

Formula

G.f.: z*g^2/(1-tz^2*g^2), where g = 1 + zg + z^2*g(g-1) = (1 - z + z^2 - sqrt(1 - 2z - z^2 - 2z^3 + z^4))/(2z^2) is the g.f. of the RNA secondary structure numbers (A004148).
T(n,m) = (m+1)*Sum_{i=0..(n-1)/2-m}((binomial(2*m+2*i+2,i)*Sum_{k=0..n-2*m-2*i-1}(binomial(k,n-2*m-k-2*i-1)*binomial(2*m+k+2*i+1,k)*(-1)^(n-k-1)))/(m+i+1)). - Vladimir Kruchinin, Mar 07 2016