A110237 Triangle read by rows: T(n,k) (0 <= k <= ceiling(n/2)-1) is the number of (1,0) steps at level k in all peakless Motzkin paths of length n (can be easily translated into RNA secondary structure terminology).
1, 2, 3, 1, 6, 4, 13, 10, 1, 28, 24, 6, 62, 59, 21, 1, 140, 144, 62, 8, 320, 350, 174, 36, 1, 740, 852, 474, 128, 10, 1728, 2077, 1263, 410, 55, 1, 4068, 5072, 3318, 1240, 230, 12, 9645, 12412, 8634, 3608, 835, 78, 1, 23010, 30440, 22314, 10216, 2792, 376, 14
Offset: 1
Examples
T(5,1)=10 because in the 8 (=A004148(5)) peakless Motzkin paths of length 5, namely HHHHH, U(H)DHH, U(HH)DH, U(HHH)D, HU(H)DH, HU(HH)D, HHU(H)D and UUHDD (where U=(1,1), H=(1,0) and D=(1,-1)), we have altogether 10 H steps at level 1 (shown between parentheses). Triangle starts: 1; 2; 3, 1; 6, 4; 13, 10, 1;
Links
- W. R. Schmitt and M. S. Waterman, Linear trees and RNA secondary structure, Discrete Appl. Math., 51, 317-323, 1994.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1978), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, Actes 8e Sem. Lotharingien, pp. 79-86.
Programs
-
Maple
g:=(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))/2/z^2: G:=z*g^2/(1-t*z^2*g^2): Gser:=simplify(series(G,z=0,20)): for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 15 do seq(coeff(t*P[n],t^k),k=1..ceil(n/2)) od;
-
Maxima
T(n,m):=(m+1)*sum((binomial(2*m+2*i+2,i)*sum(binomial(k,n-2*m-k-2*i-1)*binomial(2*m+k+2*i+1,k)*(-1)^(n-k-1),k,0,n-2*m-2*i-1))/(m+i+1),i,0,(n-1)/2-m); /* Vladimir Kruchinin, Mar 07 2016 */
Formula
G.f.: z*g^2/(1-tz^2*g^2), where g = 1 + zg + z^2*g(g-1) = (1 - z + z^2 - sqrt(1 - 2z - z^2 - 2z^3 + z^4))/(2z^2) is the g.f. of the RNA secondary structure numbers (A004148).
T(n,m) = (m+1)*Sum_{i=0..(n-1)/2-m}((binomial(2*m+2*i+2,i)*Sum_{k=0..n-2*m-2*i-1}(binomial(k,n-2*m-k-2*i-1)*binomial(2*m+k+2*i+1,k)*(-1)^(n-k-1)))/(m+i+1)). - Vladimir Kruchinin, Mar 07 2016
Comments