A110300 Not-really primes: numbers n such that n - 1, n and n + 1 all have only 1 or 2 prime factors.
3, 4, 5, 6, 10, 14, 22, 34, 38, 58, 86, 94, 122, 142, 158, 178, 202, 214, 218, 302, 382, 394, 446, 502, 542, 634, 698, 718, 842, 878, 922, 1042, 1138, 1202, 1262, 1318, 1346, 1382, 1402, 1438, 1622, 1642, 1762, 1822, 1838, 1894, 1942, 1982, 2018, 2102
Offset: 1
Examples
14 is in the sequence because 13, 14 and 15 have only 1, 2 and 2 prime factors respectively, viz. 13, 2 * 7 and 3 * 5.
Links
- Robert Israel, Table of n, a(n) for n = 1..6000
Programs
-
Maple
S:= select(t -> numtheory:-bigomega(t) <= 2, {$2..3000}): sort(convert(S intersect map(`+`,S,1) intersect map(`-`,S,1),list)); # Robert Israel, Dec 15 2019
-
PARI
isok(n) = (bigomega(n-1)>0) && (bigomega(n-1)<=2) && (bigomega(n)<=2) && (bigomega(n+1)<=2) \\ Michel Marcus, Jul 23 2013