cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110327 Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 72, 30, 6, 1, 696, 288, 60, 8, 1, 8400, 3480, 720, 100, 10, 1, 121680, 50400, 10440, 1440, 150, 12, 1, 2056320, 851760, 176400, 24360, 2520, 210, 14, 1, 39715200, 16450560, 3407040, 470400, 48720, 4032, 280, 16, 1, 862928640
Offset: 0

Views

Author

Paul Barry, Jul 20 2005

Keywords

Comments

The row polynomials form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013

Examples

			Rows begin:
  1;
  2,1;
  10,4,1;
  72,30,6,1;
  696,288,60,8,1;
  8400,3480,720,100,10,1;
  121680,50400,10440,1440,150,12,1;
		

Crossrefs

Cf. A000129, A110328 (row sums), A110329 (diagonal sums), A110330 (matrix inverse).

Formula

Column k has e.g.f.: x^k/(k!*(1-2*x-x^2)).
E.g.f.: Sum_{n>=0, k>=0} T(n,k)*x^n*y^k/n! = e^(x*y)/(1-2*x-x^2). - Franklin T. Adams-Watters, Jan 12 2007

Extensions

Edited by Franklin T. Adams-Watters, Jan 12 2007