A110327 Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).
1, 2, 1, 10, 4, 1, 72, 30, 6, 1, 696, 288, 60, 8, 1, 8400, 3480, 720, 100, 10, 1, 121680, 50400, 10440, 1440, 150, 12, 1, 2056320, 851760, 176400, 24360, 2520, 210, 14, 1, 39715200, 16450560, 3407040, 470400, 48720, 4032, 280, 16, 1, 862928640
Offset: 0
Examples
Rows begin: 1; 2,1; 10,4,1; 72,30,6,1; 696,288,60,8,1; 8400,3480,720,100,10,1; 121680,50400,10440,1440,150,12,1;
Links
- Wikipedia, Appell sequence
Formula
Column k has e.g.f.: x^k/(k!*(1-2*x-x^2)).
E.g.f.: Sum_{n>=0, k>=0} T(n,k)*x^n*y^k/n! = e^(x*y)/(1-2*x-x^2). - Franklin T. Adams-Watters, Jan 12 2007
Extensions
Edited by Franklin T. Adams-Watters, Jan 12 2007
Comments