A110371 a(n)=[(n+1)(n+2)(n+3)...(2n)]/(1+2+3+...+n).
2, 4, 20, 168, 2016, 31680, 617760, 14414400, 392071680, 12189864960, 426645273600, 16606346803200, 711700577280000, 33307587016704000, 1690360041097728000, 92472637542405120000, 5425061402487767040000, 339780161524233830400000, 22629358757513973104640000
Offset: 1
Examples
a(4) = 5*6*7*8/10 = 168. a(5) = 10*9*8*7*6/(5+4+3+2+1) = 2016.
Links
- Ron Knott, 2016, January 2016.
Crossrefs
Cf. A065866.
Programs
-
Maple
seq(2*(2*n)!/(n+1)!/n,n=1..20); # Emeric Deutsch, Aug 05 2005
-
Mathematica
Table[(Times@@Range[n+1,2n])/((n(n+1))/2),{n,20}] (* or *) Table[ 2(n-1)! CatalanNumber[n],{n,20}] (* Harvey P. Dale, Jul 15 2016 *)
-
PARI
A110371(n)=binomial(2*n,n-1)/n*(n-1)!*2 \\ M. F. Hasler, Jan 31 2016
Formula
{2*(2n)!}/{(n+1)!*n}
Extensions
More terms from Emeric Deutsch, Aug 05 2005
Edited by M. F. Hasler, Jan 31 2016
Comments