A110380 a(n) = min{p + q + r + ...} where p,q,r,... are distinct unary numbers - containing only ones, i.e., of the form (10^k - 1)/9 - formed by using a total of n ones.
1, 11, 12, 112, 122, 123, 1123, 1223, 1233, 1234, 11234, 12234, 12334, 12344, 12345, 112345, 122345, 123345, 123445, 123455, 123456, 1123456, 1223456, 1233456, 1234456, 1234556, 1234566, 1234567, 11234567, 12234567, 12334567, 12344567, 12345567, 12345667, 12345677
Offset: 1
Examples
Using n ones and only the + sign we get the following sums: a(1) = 1; a(2) = 11; a(3) = 12 = 1 + 11; a(4) = 112 = 1 + 111; a(5) = 122 = 11 + 111; a(6) = 123 = 1 + 11 + 111; a(7) = 1123 = 1 + 11 + 1111; a(8) = 1223 = 1 + 111 + 1111; a(9) = 1233 = 11 + 111 + 1111.
Links
- Fred Schneider, Table of n, a(n) for n = 1..5000
Programs
-
Haskell
a110380 = drop 1 fn where fn = 0 : 1 : concat (fn' 2) fn' n = (map (+ones) (drop nv $ take (n + nv) fn)) : (fn' (n+1)) where ones = div (10^n -1) 9 nv = div ((n-1)*(n-2)) 2 -- Fred Schneider, Sep 04 2016
-
PARI
apply( {A110380(n,m=A003056(n))=sum(k=1,m,10^((n+k>(m+3)*m\2)+k)\9)}, [1..40]) \\ with {A003056(n)=(sqrtint(n*8+1)-1)\2}. M. F. Hasler, Aug 08 2020
Formula
Extensions
More terms from Joshua Zucker, May 08 2006
Comments