Fred Schneider has authored 20 sequences. Here are the ten most recent ones:
A284597
a(n) is the least number that begins a run of exactly n consecutive numbers with a nondecreasing number of divisors, or -1 if no such number exists.
Original entry on oeis.org
46, 5, 43, 1, 1613, 241, 17011, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1
241 = 241^1 => 2 divisors
242 = 2^1 * 11^2 => 6 divisors
243 = 3^5 => 6 divisors
244 = 2^2 * 61^1 => 6 divisors
245 = 5^1 * 7^2 => 6 divisors
246 = 2^1 * 3^1 * 41^1 => 8 divisors
247 = 13^1 * 19^1 => 4 divisors
So, 247 breaks the chain. 241 is the lowest number that is the beginning of exactly 6 consecutive numbers with a nondecreasing number of divisors. So it is the 6th term in the sequence.
Note also that a(5) is not 242, even though tau evaluated at 242, 243,..., 246 gives 5 nondecreasing values, because here we deal with full runs and 242 belongs to the run of 6 values starting at 241.
-
Function[s, {46}~Join~Map[Function[r, Select[s, Last@ # == r &][[1, 1]]], Range[2, Max[s[[All, -1]] ] ]]]@ Map[{#[[1, 1]], Length@ # + 1} &, DeleteCases[SplitBy[#, #[[-1]] >= 0 &], k_ /; k[[1, -1]] < 0]] &@ MapIndexed[{First@ #2, #1} &, Differences@ Array[DivisorSigma[0, #] &, 10^6]] (* Michael De Vlieger, May 06 2017 *)
-
genit()={for(n=1,20,q=0;ibgn=1;for(m=ibgn,9E99,mark1=q;q=numdiv(m);if(mark1==0,summ=0;dun=0;mark2=m);if(q>=mark1,summ+=1,dun=1);if(dun>0&&summ==n,print(n," ",mark2);break);if(dun>0&&summ!=n,q=0;m-=1)));} \\ Bill McEachen, Apr 25 2017
-
A284597=vector(19);apply(scan(N,s=1,t=numdiv(s))=for(k=s+1,N,t>(t=numdiv(k))||next;k-s>#A284597||A284597[k-s]||printf(" a(%d)=%d,",k-s,s)||A284597[k-s]=s;s=k);done,[10^6]) \\ Finds a(1..10) in ~ 1 sec, but would take 100 times longer to get one more term with scan(10^8). You may extend the search using scan(END,START). - M. F. Hasler, May 06 2017
-
from sympy import divisor_count
def A284597(n):
count, starti, s, i = 0,1,0,1
while True:
d = divisor_count(i)
if d < s:
if count == n:
return starti
starti = i
count = 0
s = d
i += 1
count += 1 # Chai Wah Wu, May 04 2017
A284596
a(n) is the minimum number that is the first of n consecutive integers with an increasing number of divisors.
Original entry on oeis.org
2, 1, 73, 61, 35521, 11371, 7392171, 168776043, 1584614377, 38045133481
Offset: 1
61 => 61^1 => 2 divisors
62 => 2^1 * 31^1 => 4 divisors
63 => 3^2 * 7 => 6 divisors
64 => 2^6 => 7 divisors
65 => 5^1 * 13^1 => 4 divisors.
So 61 is the first of four consecutive numbers with an increasing number of divisors. 65 breaks that chain. 61 is the minimum such number so it is the 4th number in the sequence.
A258035
Smallest prime number p such that p + pssq(1), p + pssq(2), ... p + pssq(n) are all prime but p+pssq(n+1) is not, where pssq(n) is the partial sum of the square of the proper terms of the primorial (A189997(n)-1).
Original entry on oeis.org
2, 37, 3, 7, 13, 277, 2617, 43, 2924263, 300999679, 631112173, 1368737917, 4428230508349
Offset: 0
a(3) = 7 because 7 + 4, 7 + 40 and 7 + 940 are primes, but 7 + 45040 = 107 * 421 is not.
Cf.
A257466 (analog for partial primorial sum),
A257467 (analog for primorial squared).
A257467
Smallest prime number p such that p + psq(1), p + psq(2), ... p + psq(n) are all prime but p+psq(n+1) is not. (psq(n) is the square of the primorial.)
Original entry on oeis.org
2, 3, 43, 7, 163, 397, 5527, 454543, 615883, 142516687, 68967673, 57502725253, 37520993053, 2630665498987, 39809897510563
Offset: 0
For prime 43, 43 + 4 and 43 + 36 are prime but not 43 + 30^2.
-
psq(n)=my(P=1); forprime(p=2, prime(n), P*=p); P^2;
isokpsq(p, n) = {for (k=1, n, if (!isprime(p+psq(k)), return (0));); if (!isprime(p+psq(n+1)), return (1));}
a(n) = {p = 2; while (!isokpsq(p,n), p = nextprime(p+1)); p;} \\ Michel Marcus, May 04 2015
-
allprime(v,n=0)=for(i=1,#v,if(!isprime(v[i]+n), return(0))); 1
a(n)=if(n<2,return(n+2)); my(t=4,v=vector(n-1,i,t*=prime(i+1)^2),p=2); t*=prime(n+1)^2; forprime(q=3,, if(q-p==4 && allprime(v,p) && !isprime(t+p), return(p)); p=q) \\ Charles R Greathouse IV, May 05 2015
A257466
Smallest prime number p such that p + pps(1), p + pps(2), ..., p + pps(n) are all prime but p + pps(n+1) is not, where pps(n) is the partial primorial sum (A060389(n)).
Original entry on oeis.org
2, 17, 11, 5, 3, 101, 19469, 38669, 191459, 191, 59, 3877889, 494272241, 360772331, 6004094833991, 41320119600341
Offset: 0
For prime 3: 3+2, 3+8, 3+38, 3+248 are all prime. 3+2558 = 13 * 197 is not. So a(4)= 3. (3 is the smallest prime that has exactly 4 terms.)
2 has zero terms because 2+2 is composite, so a(0)=2.
-
pps(n)=my(s, P=1); forprime(p=2, prime(n), s+=P*=p); s;
isokpps(p, n) = {for (k=1, n, if (!isprime(p+pps(k)), return (0));); if (!isprime(p+pps(n+1)), return (1));}
a(n) = {my(p = 2); while (!isokpps(p,n), p = nextprime(p+1)); p;} \\ Michel Marcus, May 02 2015
A254791
Nontrivial solutions to n = sigma(a) = sigma(b) (A000203) and rad(a) = rad(b) (A007947) with a != b.
Original entry on oeis.org
4800, 142800, 1909440, 32948784, 210313800, 993938400, 1069286400, 1264808160, 1309463064, 2281635216, 3055104000, 3250790400
Offset: 1
Sigma => Pair of distinct integers 4800 => 2058 = 2 * 3 * 7^3 and 1512 = 2^3 * 3^3 * 7142800 => 52728 = 2^3 * 3 * 13^3 and 44928 = 2^7 * 3^3 * 131909440 => 1038230 = 2 * 5 * 47^3 and 752000 = 2^7 * 5^3 * 4732948784 => 10825650 = 2 * 3^9 * 5^2 * 11 and 8624880 = 2^4 * 3^4 * 5 * 11^3210313800 => 131576362 = 2 * 17 * 157^3 and 98731648 = 2^7 * 17^3 * 157993938400 => 336110688 = 2^5 * 3^3 * 73^3 and 326965248 = 2^11 * 3^7 * 73.
The pairs that contribute to the solution each have the same rad or squarefree kernel and they are "nontrivial" because within a pair for the same prime, none of the exponents match.
A239635
Common Sigma, Uncommon Clique Numbers: a(n) is the minimal s for which there exists a set of n pairwise relatively prime integers with a sigma value of s.
Original entry on oeis.org
1, 12, 24, 72, 240, 360, 1440, 1440, 1440, 8640, 10080, 15120, 34560, 45360, 55440, 60480, 60480, 166320, 181440, 211680, 332640, 332640, 332640, 665280, 665280, 665280, 831600, 907200, 1663200, 2494800, 2661120, 2661120
Offset: 1
A165212
The n-th term in the sequence is the minimal number that has some subset of DPS's that form an n-term arithmetic progression.
Original entry on oeis.org
1, 4, 72, 1008, 36400
Offset: 1
72's solution: 3+24, 4+18, 8+9. The difference between terms is 5. (Note: 72 = 3*24 = 4*18 = 8*9)
A167348
Let a(n) be the n-th term of the sequence. Let m = primorial(a(n)); m is the minimum positive integer such that m/phi(m) >= n.
Original entry on oeis.org
2, 2, 3, 7, 13, 23, 43, 79, 149, 257, 461, 821, 1451, 2549, 4483, 7879, 13859, 24247, 42683, 75037, 131707, 230773, 405401, 710569, 1246379, 2185021, 3831913, 6720059, 11781551, 20657677, 36221753, 63503639, 111333529, 195199289
Offset: 1
primorial(7) = 210; 210/phi(210) = 210/48 >= 4;
-
al(lim) = local(mm,n,m); mm=3; n=2; m=1; forprime(x=3,lim, n*=x; m*= (x-1); if (n\m >= mm, print1(x","); mm++)); /* This will generate all terms of this sequence from the 3rd onward, up to lim. The computation slows down for large values because of the size of the internal values. */
A167768
First of 4 or more consecutive integers with equal values of phi(phi(n)).
Original entry on oeis.org
1, 7, 31, 32, 2694, 131071, 50802031105
Offset: 1
p2(1) = p2(2) = p2(3) = p2(4) = 1, p2(7) = p2(8) = p2(9) = p2(10) = 2.
-
a[n_] := EulerPhi[EulerPhi[n]]; Select[Range[10000], a[#] == a[# + 1] && a[# + 1] == a[# + 2] && a[# + 2] == a[# + 3] &] (* G. C. Greubel, Jun 23 2016 *)
-
pp(n) = eulerphi(eulerphi(n))
isA167768(n) = pp(n)==pp(n+1) && pp(n+1)==pp(n+2) && pp(n+2)==pp(n+3) \\ Michael B. Porter, Nov 24 2009
Comments