cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A360895 Decimal expansion of exp(exp(-gamma)) where gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 7, 5, 3, 2, 2, 9, 4, 4, 3, 4, 9, 5, 6, 9, 4, 5, 8, 2, 2, 9, 7, 3, 6, 5, 4, 2, 9, 6, 4, 4, 0, 6, 1, 2, 8, 7, 6, 0, 5, 7, 4, 5, 8, 0, 2, 0, 2, 0, 7, 5, 4, 4, 5, 6, 1, 9, 0, 2, 9, 5, 1, 5, 6, 3, 1, 5, 3, 9, 8, 8, 9, 4, 0, 8, 7, 8, 0, 7, 2, 0, 6, 0, 7, 2, 4, 5, 3, 1, 0, 5, 5, 5, 8, 8, 8, 6, 7, 4, 0, 5, 2, 0, 2, 4, 3, 4, 3, 7, 6, 8, 4, 6, 4, 2
Offset: 1

Views

Author

Artur Jasinski, Feb 25 2023

Keywords

Comments

Theorem: Let p(n) be the smallest prime such that Product_{prime p<=p(n)} 1/(1-1/p) >= n. Then lim_{n->oo} p(n+1)/p(n) = exp(exp(-gamma)).
Proof. Follow Mertens's Third Theorem Product_{p<=x} 1/(1-1/p) ~ log(x)/exp(-gamma).
For any particular integer n, it follows from the equations n = log(x_n)/exp(-gamma) -> x_n = exp(n*exp(-gamma)) and n+1 = log(x_n+1)/exp(-gamma) -> x_n+1 = exp((n+1)*exp(-gamma)) that lim_{n->oo} exp((n+1)*exp(-gamma))/exp((n)*exp(-gamma)) = exp(exp(-gamma)).
Convergence table:
n p(n) truncated Euler product up to p(n) ratio p(n)/p(n-1)
42 17427088769 42.0000000010939727723681242652955 1.7532416978341651
43 30553756811 43.0000000012946363551468233325186 1.7532335558736718
44 53567706007 44.0000000002803554088007272169139 1.7532281329055578
45 93916601047 45.0000000002681963271546340553884 1.7532317145469581
46 164657625967 46.0000000002470257389410099668348 1.7532323799133028
47 288682860119 47.0000000001305074313442036255929 1.7532310357544971
48 506127311983 48.0000000000705764045487316221655 1.7532295189758258
oo oo oo 1.7532294434956945

Examples

			1.753229443495694582297365429644...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Exp[Exp[-EulerGamma]], 115]][[1]]
  • PARI
    exp(exp(-Euler)) \\ Michel Marcus, Feb 25 2023

Formula

Equals exp(A080130).
Limit_{n->oo} A091440(n+1)/A091440(n).
Limit_{n->oo} A061556(n+1)/A061556(n).
Limit_{n->oo} A167348(n+1)/A167348(n).
Showing 1-1 of 1 results.