cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A362151 Decimal expansion of exp(zeta(2)/exp(gamma)) where gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

2, 5, 1, 8, 2, 4, 9, 0, 3, 2, 5, 7, 2, 9, 6, 7, 5, 3, 9, 2, 0, 4, 0, 7, 1, 0, 5, 9, 5, 4, 2, 6, 8, 7, 0, 0, 2, 9, 3, 4, 5, 3, 5, 8, 6, 7, 8, 8, 6, 7, 7, 9, 4, 3, 8, 1, 4, 6, 2, 0, 6, 2, 1, 8, 5, 3, 6, 8, 3, 9, 3, 9, 9, 3, 4, 8, 8, 4, 6, 9, 4, 2, 4, 9, 3, 5, 1, 6, 9, 3, 4, 0, 5, 8, 5, 4, 2, 0, 8, 9, 8, 5, 0, 6, 8, 0, 4, 4, 0, 4, 2, 1, 8, 7, 3
Offset: 1

Views

Author

Artur Jasinski, Apr 09 2023

Keywords

Comments

Theorem: Let p(n) be the smallest prime p such that Product_{prime p<=p(n)} (1 + 1/p) >= n. Then lim_{n->oo} p(n+1)/p(n) = exp(zeta(2)/exp(gamma)).
Proof:
Follow E. C. Titchmarsh and D. R. Heath-Brown p. 67 eq. (3.15.3).
Product_{p<=x} (1+1/p) ~ log(x)*exp(gamma)/zeta(2).
For any particular integer n, it follows from the equations
n = log(x)*exp(gamma)/zeta(2) -> x_n = exp(n*exp(-gamma)*zeta(2)) and
n+1 = log(x)*exp(gamma)/zeta(2) -> x_(n+1) = exp((n+1)*exp(-gamma)*zeta(2))
that lim_{n->oo} exp((n+1)*exp(-gamma)*zeta(2))/exp(n*exp(-gamma)*zeta(2)) = exp(zeta(2)/exp(gamma)).
Convergence table:
n p(n) truncated product up to p(n) ratio p(n)/p(n-1)
22 667038311 22.0000000031301736805108740934458 2.51828570030407176
23 1679809291 23.0000000125715665307020553151962 2.51831006300326279
24 4230219377 24.0000000051805484055085694624554 2.51827359192764460
25 10652786759 25.0000000022564574124503565355420 2.51825870235476442
26 26826453991 26.0000000003663337659198715971438 2.51825692167692061
27 67555877849 27.0000000003436918565017475632101 2.51825596747390854
28 170122677001 28.0000000000496255633187331645369 2.51825129681914497
29 428411419313 29.0000000000157769668449867937821 2.51824992919951377
oo oo oo 2.51824903257296753

Examples

			2.518249032572967539204071059542687...
		

References

  • E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function, 2nd ed., 1986.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Exp[Zeta[2]/Exp[EulerGamma]], 115]][[1]]

Formula

Equals exp(A013661/exp(A001620)).
Limit_{n->oo} A072997(n+1)/A072997(n).
Showing 1-1 of 1 results.