A294528
a(n) is the smallest prime that begins a run of exactly n consecutive numbers having 2, 4, ..., 2*n divisors.
Original entry on oeis.org
2, 5, 61, 421, 1524085621
Offset: 1
a(3) = 61 because 61 (prime), 62 = 2*31, and 63 = 3^2*7 have 2, 4, and 6 divisors, respectively (and 64 does not have exactly 8 divisors, so 63 is the last number in the run), and there is no smaller number having this property.
a(5) = 1524085621 because the 5 consecutive integers 1524085621..1524085625 have 2, 4, 6, 8, and 10 divisors, respectively (and 1524085626 does not have exactly 12 divisors), and there is no smaller number having this property.
A323743
Table read by rows: row n lists the numbers k for which there exist only finitely many runs of n consecutive integers whose number-of-divisors function sums to k.
Original entry on oeis.org
1, 3, 4, 5, 5, 7, 8, 9, 8, 9, 11, 12, 13, 14, 15, 10, 13, 15, 17, 18, 19, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 16, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 20, 22, 24, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39
Offset: 1
There is only one number with exactly 1 divisor (namely, k=1), but there are infinitely many numbers with j divisors for every j >= 2, so row 1 consists only of the single term 1.
The sequence of values tau(k) for k >= 1 is A000005, which begins 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ..., from which the sums of two consecutive terms are 1+2=3, 2+2=4, 2+3=5, 3+2=5, 2+4=6, 4+2=6, 2+4=6, 4+3=7, 3+4=7, ...; no number j < 3 appears as such a sum, every j >= 6 appears infinitely many times as such a sum, and each j in {3,4,5} appears as such a sum only finitely many times, so row 2 is {3, 4, 5}.
Row 3 does not contain 6 as a term because there exists no run of 3 consecutive numbers whose sum of tau values is exactly 6.
The first six rows of the table are as follows:
row 1: {1};
row 2: {3, 4, 5};
row 3: {5, 7, 8, 9};
row 4: {8, 9, 11, 12, 13, 14, 15};
row 5: {10, 13, 15, 17, 18, 19};
row 6: {14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27}.
Cf.
A000005,
A005237,
A006558,
A048892,
A072507,
A100366,
A119479,
A141621,
A284596,
A284597,
A292580,
A319037,
A319045,
A319046.
Showing 1-2 of 2 results.
Comments