cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A294528 a(n) is the smallest prime that begins a run of exactly n consecutive numbers having 2, 4, ..., 2*n divisors.

Original entry on oeis.org

2, 5, 61, 421, 1524085621
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 01 2017

Keywords

Comments

No such run exists for any n > 5; for a proof, see Links.

Examples

			a(3) = 61 because 61 (prime), 62 = 2*31, and 63 = 3^2*7 have 2, 4, and 6 divisors, respectively (and 64 does not have exactly 8 divisors, so 63 is the last number in the run), and there is no smaller number having this property.
a(5) = 1524085621 because the 5 consecutive integers 1524085621..1524085625 have 2, 4, 6, 8, and 10 divisors, respectively (and 1524085626 does not have exactly 12 divisors), and there is no smaller number having this property.
		

Crossrefs

A323743 Table read by rows: row n lists the numbers k for which there exist only finitely many runs of n consecutive integers whose number-of-divisors function sums to k.

Original entry on oeis.org

1, 3, 4, 5, 5, 7, 8, 9, 8, 9, 11, 12, 13, 14, 15, 10, 13, 15, 17, 18, 19, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 16, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 20, 22, 24, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 02 2019

Keywords

Comments

Row n lists the numbers k such that
0 < |{m : Sum_j={m..m+n-1} tau(j) = k}| < infinity
where tau(j) = A000005(j) is the number of divisors of j.

Examples

			There is only one number with exactly 1 divisor (namely, k=1), but there are infinitely many numbers with j divisors for every j >= 2, so row 1 consists only of the single term 1.
The sequence of values tau(k) for k >= 1 is A000005, which begins 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ..., from which the sums of two consecutive terms are 1+2=3, 2+2=4, 2+3=5, 3+2=5, 2+4=6, 4+2=6, 2+4=6, 4+3=7, 3+4=7, ...; no number j < 3 appears as such a sum, every j >= 6 appears infinitely many times as such a sum, and each j in {3,4,5} appears as such a sum only finitely many times, so row 2 is {3, 4, 5}.
Row 3 does not contain 6 as a term because there exists no run of 3 consecutive numbers whose sum of tau values is exactly 6.
The first six rows of the table are as follows:
  row 1: {1};
  row 2: {3, 4, 5};
  row 3: {5, 7, 8, 9};
  row 4: {8, 9, 11, 12, 13, 14, 15};
  row 5: {10, 13, 15, 17, 18, 19};
  row 6: {14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27}.
		

Crossrefs

Showing 1-2 of 2 results.