A340159
a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 3*k, ..., n*k divisors respectively.
Original entry on oeis.org
1, 1, 61, 421, 211082, 11238341, 16788951482, 41126483642
Offset: 1
a(3) = 61 because 61, 62 and 63 have 2, 4, and 6 divisors respectively and there is no smaller number having this property.
Cf.
A294528 for similar sequence with primes.
-
isok(m, n) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);}
a(n) = my(m=1); while(!isok(m, n), m++); m; \\ Michel Marcus, Dec 30 2020
-
# see LINKS
A340158
Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively.
Original entry on oeis.org
211082, 2364062, 2774165, 3379802, 3743573, 4390682, 5651042, 5845442, 6708578, 7326122, 7371482, 8566394, 8839202, 9056282, 10154642, 10301333, 10325621, 10446242, 10540202, 11238341, 11719562, 11978762, 12377282, 12871058, 13456202, 16840058, 16954562, 17155141
Offset: 1
tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20.
-
[m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5]
-
Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* Amiram Eldar, Dec 30 2020 *)
-
isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ Michel Marcus, Jan 16 2021
A340157
Numbers m such that numbers m, m + 1, m + 2 and m + 3 have k, 2k, 3k and 4k divisors respectively.
Original entry on oeis.org
421, 3013, 5029, 5223, 5245, 5893, 6487, 10533, 11911, 14677, 17173, 23077, 23573, 24613, 25141, 25213, 27637, 27973, 28357, 30661, 32407, 34117, 37477, 38282, 39751, 43495, 45973, 47365, 48423, 50821, 50965, 53413, 53989, 54421, 55141, 56103, 57877, 58165
Offset: 1
tau(421) = 2, tau(422) = 4, tau(423) = 6, tau(424) = 8.
-
[m: m in [1..10^5] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4]
-
Select[Range[60000], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3}]/{1, 2, 3, 4}) &] (* Amiram Eldar, Dec 30 2020 *)
-
isok(m, n=4) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);} \\ Michel Marcus, Dec 30 2020
A341214
a(n) is the smallest prime p such that p, p - 1, p - 2, ..., p - n + 1 have 2, 4, 6, ..., 2*n divisors respectively.
Original entry on oeis.org
2, 7, 47, 1019, 55414379
Offset: 1
a(4) = 1019 because 1016, 1017, 1018 and 1019 have 8, 6, 4, and 2 divisors respectively and there is no smaller prime having this property (see A340872).
Cf.
A341213 (similar sequence for natural numbers).
A340871
Primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively.
Original entry on oeis.org
421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, 2070421, 2100661, 2162581, 2534821, 2585941, 2666581, 2851621, 3296581, 3658021, 3800581, 4657381, 4969141, 5739541, 5962741, 6188821, 6537301, 6556741, 7090261
Offset: 1
tau(421) = 2, tau (422) = 4, tau (423) = 6, tau (424) = 8.
-
[m: m in [1..10^7] | IsPrime(m) and #Divisors(m + 1) eq 4 and #Divisors(m + 2) eq 6 and #Divisors(m + 3) eq 8];
-
Select[Range[10^6], DivisorSigma[0, # + {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *)
Select[Prime[Range[490000]],DivisorSigma[0,#+{1,2,3}]=={4,6,8}&] (* Harvey P. Dale, Oct 02 2021 *)
A363335
Irregular table read by rows: T(n,k) is the smallest m that has 2*n divisors and is at the beginning of a run of exactly k consecutive integers whose number of divisors increases by 2, or -1 if no such m exists.
Original entry on oeis.org
2, 5, 61, 421, 1524085621, 10, 27, 187, 2545622, 12, 153, 35557, 363121, 223577456873, 44753756873
Offset: 1
T(2,3) is the smallest m such that tau(m+j) = 2*(2+j) for each j in 0..2 but not for j = -1 or j = 3; i.e., tau(m) = 4, tau(m+1) = 6, and tau(m+2) = 8, but tau(m-1) != 2 and tau(m+3) != 10. The smallest such m is 187:
m = 187 = 11*17 (which has 4 divisors),
m+1 = 188 = 2^2*47 (which has 6 divisors), and
m+2 = 189 = 3^3*7 (which has 8 divisors), but
m-1 = 186 = 2*3*31 (which has 8 divisors, not 2), and
m+3 = 190 = 2*5*19 (which has 8 divisors, not 10).
The first several rows of the table are as follows:
Row n=1: 2, 5, 61, 421, 1524085621; (A294528)
Row n=2: 10, 27, 187, 2545622;
Row n=3: 12, 153, 35557, 363121, 223577456873, 44753756873, ...
Row n=4: 24, 890, 1615, 795056874, 718511874, ...
Row n=5: 48, 1424, 84281875, 1578123, ...
Row n=6: 60, 1215, 53216, ...
Row n=7: 192, 2624, ...
Row n=8: 120, 6699, 31310, ...
Row n=9: 180, 16928, ...
...
Showing 1-6 of 6 results.
Comments