A340158 Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively.
211082, 2364062, 2774165, 3379802, 3743573, 4390682, 5651042, 5845442, 6708578, 7326122, 7371482, 8566394, 8839202, 9056282, 10154642, 10301333, 10325621, 10446242, 10540202, 11238341, 11719562, 11978762, 12377282, 12871058, 13456202, 16840058, 16954562, 17155141
Offset: 1
Keywords
Examples
tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20.
Programs
-
Magma
[m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5]
-
Mathematica
Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* Amiram Eldar, Dec 30 2020 *)
-
PARI
isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ Michel Marcus, Jan 16 2021
Comments