A340159
a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 3*k, ..., n*k divisors respectively.
Original entry on oeis.org
1, 1, 61, 421, 211082, 11238341, 16788951482, 41126483642
Offset: 1
a(3) = 61 because 61, 62 and 63 have 2, 4, and 6 divisors respectively and there is no smaller number having this property.
Cf.
A294528 for similar sequence with primes.
-
isok(m, n) = {my(k=numdiv(m)); for (i=1, n-1, if (numdiv(m+i) != (i+1)*k, return (0));); return(1);}
a(n) = my(m=1); while(!isok(m, n), m++); m; \\ Michel Marcus, Dec 30 2020
-
# see LINKS
A340158
Numbers m such that m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 3k, 4k and 5k divisors respectively.
Original entry on oeis.org
211082, 2364062, 2774165, 3379802, 3743573, 4390682, 5651042, 5845442, 6708578, 7326122, 7371482, 8566394, 8839202, 9056282, 10154642, 10301333, 10325621, 10446242, 10540202, 11238341, 11719562, 11978762, 12377282, 12871058, 13456202, 16840058, 16954562, 17155141
Offset: 1
tau(211082) = 4, tau(211083) = 8, tau(211084) = 12, tau(211085) = 16, tau(211086) = 20.
-
[m: m in [1..10^6] | #Divisors(m) eq #Divisors(m + 1)/2 and #Divisors(m) eq #Divisors(m + 2)/3 and #Divisors(m) eq #Divisors(m + 3)/4 and #Divisors(m) eq #Divisors(m + 4)/5]
-
Select[Range[5*10^6], Equal @@ (DivisorSigma[0, # + {0, 1, 2, 3, 4}]/{1, 2, 3, 4, 5}) &] (* Amiram Eldar, Dec 30 2020 *)
-
isok(m) = my(k = numdiv(m)); (numdiv(m+1) == 2*k) && (numdiv(m+2) == 3*k) && (numdiv(m+3) == 4*k) && (numdiv(m+4) == 5*k); \\ Michel Marcus, Jan 16 2021
A340871
Primes p such that p, p + 1, p + 2 and p + 3 have 2, 4, 6 and 8 divisors respectively.
Original entry on oeis.org
421, 30661, 50821, 54421, 130021, 195541, 423781, 635461, 1003381, 1577941, 1597381, 1883941, 2070421, 2100661, 2162581, 2534821, 2585941, 2666581, 2851621, 3296581, 3658021, 3800581, 4657381, 4969141, 5739541, 5962741, 6188821, 6537301, 6556741, 7090261
Offset: 1
tau(421) = 2, tau (422) = 4, tau (423) = 6, tau (424) = 8.
-
[m: m in [1..10^7] | IsPrime(m) and #Divisors(m + 1) eq 4 and #Divisors(m + 2) eq 6 and #Divisors(m + 3) eq 8];
-
Select[Range[10^6], DivisorSigma[0, # + {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *)
Select[Prime[Range[490000]],DivisorSigma[0,#+{1,2,3}]=={4,6,8}&] (* Harvey P. Dale, Oct 02 2021 *)
Showing 1-3 of 3 results.
Comments