A341214
a(n) is the smallest prime p such that p, p - 1, p - 2, ..., p - n + 1 have 2, 4, 6, ..., 2*n divisors respectively.
Original entry on oeis.org
2, 7, 47, 1019, 55414379
Offset: 1
a(4) = 1019 because 1016, 1017, 1018 and 1019 have 8, 6, 4, and 2 divisors respectively and there is no smaller prime having this property (see A340872).
Cf.
A341213 (similar sequence for natural numbers).
A340872
Primes p such that p, p - 1, p - 2 and p - 3 have 2, 4, 6 and 8 divisors respectively.
Original entry on oeis.org
1019, 226379, 645419, 893099, 967259, 1744859, 1880939, 1996859, 2238779, 2435339, 2999099, 3316619, 3734219, 4092059, 4269899, 4344779, 4511099, 4681739, 4692539, 5857499, 5993579, 6476699, 6744539, 6848939, 6855419, 8160059, 8608619, 8755499, 9254459
Offset: 1
tau (1016) = 8, tau(1017) = 6, tau(1018) = 4, tau(1019) = 2.
-
[m: m in [1..10^7] | IsPrime(m) and #Divisors(m - 1) eq 4 and #Divisors(m - 2) eq 6 and #Divisors(m - 3) eq 8]
-
Select[Range[10^6], DivisorSigma[0, # - {0, 1, 2, 3}] == {2, 4, 6, 8} &] (* Amiram Eldar, Jan 25 2021 *)
Select[Prime[Range[620000]],DivisorSigma[0,#-{0,1,2,3}]=={2,4,6,8}&] (* Harvey P. Dale, Nov 19 2021 *)
Showing 1-2 of 2 results.
Comments