cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341213 a(n) is the smallest number m such that numbers m, m - 1, m - 2, ..., m - n + 1 have k, 2*k, 3*k, ..., n*k divisors respectively.

Original entry on oeis.org

1, 7, 47, 1019, 154379, 59423129, 3100501318, 126544656838
Offset: 1

Views

Author

Jaroslav Krizek, Feb 07 2021

Keywords

Comments

a(n) is the smallest number m such that tau(m) = tau(m - 1)/2 = tau(m - 2)/3 = tau(m - 3)/4 = ... = tau(m - n + 1)/n, where tau(k) = the number of divisors of k (A000005).
Corresponding values of numbers k: 1, 2, 2, 2, 4, 4, 4, 4, ...

Examples

			a(3) = 47 because 45, 46 and 47 have 6, 4, and 2 divisors respectively and there is no smaller number having this property.
		

Crossrefs

Cf. A341214 (similar sequence with primes).

Programs

  • Python
    def tau(n): # A000005
        d, t = 1, 0
        while d*d < n:
            if n%d == 0:
                t = t+2
            d = d+1
        if d*d == n:
            t = t+1
        return t
    n, a = 1, 1 # corrected by Martin Ehrenstein, Apr 14 2021
    while n > 0:
        nn, t1 = 1, tau(a)
        while nn < n and tau(a-nn) == (nn+1)*t1:
            nn = nn+1
        if nn == n:
            print(n,a)
            n = n+1
        a = a+1 # A.H.M. Smeets, Feb 07 2021

Extensions

a(6) from Amiram Eldar, Feb 07 2021
a(7) from Jinyuan Wang, Feb 08 2021
a(1) corrected and extended with a(8) by Martin Ehrenstein, Apr 14 2021

A341212 Numbers m such that m, m - 1, m - 2, m - 3 and m - 4 have k, 2k, 3k, 4k and 5k divisors respectively.

Original entry on oeis.org

154379, 1075198, 4211518, 4700758, 4745227, 5954379, 6036043, 6330235, 6485998, 6524878, 6851227, 7846798, 8536027, 8556358, 11718598, 12100027, 12126838, 13584838, 14869379, 15320587, 16934998, 17074379, 18154379, 18904027, 19013129, 19774379, 19779995
Offset: 1

Views

Author

Jaroslav Krizek, Feb 07 2021

Keywords

Comments

Numbers m such that tau(m) = tau(m - 1)/2 = tau(m - 2)/3 = tau(m - 3)/4 = tau(m - 4)/5, where tau(k) = the number of divisors of k (A000005).
Corresponding values of numbers k: 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
First prime term 55414379 (= A341214(5)) of this sequence is the smallest prime p such that p, p - 1, p - 2, p - 3 and p - 4 have 2, 4, 6, 8 and 10 divisors respectively.

Examples

			tau(154375) = 20, tau(154376) = 16, tau(154377) = 12, tau(154378) = 8, tau(154379) = 4.
		

Crossrefs

Programs

  • Magma
    [m: m in [5..10^6] | #Divisors(m - 1) eq 2*#Divisors(m) and #Divisors(m - 2) eq 3*#Divisors(m) and #Divisors(m - 3) eq 4*#Divisors(m) and #Divisors(m - 4) eq 5*#Divisors(m)]
    
  • Mathematica
    seq[max_, n_] := Module[{d = DivisorSigma[0, Range[n]], s = {}}, Do[If[Length @ Union[d/Range[n, 1, -1]] == 1, AppendTo[s, k - 1]]; d = Join[Rest@d, {DivisorSigma[0, k]}], {k, n + 1, max}]; s]; seq[5*10^6, 5] (* Amiram Eldar, Feb 08 2021 *)
  • PARI
    isok(m) = if (m>5, my(nb=numdiv(m)); (numdiv(m-1) == 2*nb) && (numdiv(m-2) == 3*nb) && (numdiv(m-3) == 4*nb) && (numdiv(m-4) == 5*nb)); \\ Michel Marcus, Apr 01 2021
  • Python
    def tau(n): # A000005
        d, t = 1, 0
        while d*d < n:
            if n%d == 0:
                t = t+2
            d = d+1
        if d*d == n:
            t = t+1
        return t
    n, a = 1, 2
    while n <= 27:
        nn, t1 = 1, tau(a)
        while nn < 5 and tau(a-nn) == (nn+1)*t1:
            nn = nn+1
        if nn == 5:
            print(n,a)
            n = n+1
        a = a+1 # A.H.M. Smeets, Feb 07 2021
    
Showing 1-2 of 2 results.