cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294528 a(n) is the smallest prime that begins a run of exactly n consecutive numbers having 2, 4, ..., 2*n divisors.

Original entry on oeis.org

2, 5, 61, 421, 1524085621
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 01 2017

Keywords

Comments

No such run exists for any n > 5; for a proof, see Links.

Examples

			a(3) = 61 because 61 (prime), 62 = 2*31, and 63 = 3^2*7 have 2, 4, and 6 divisors, respectively (and 64 does not have exactly 8 divisors, so 63 is the last number in the run), and there is no smaller number having this property.
a(5) = 1524085621 because the 5 consecutive integers 1524085621..1524085625 have 2, 4, 6, 8, and 10 divisors, respectively (and 1524085626 does not have exactly 12 divisors), and there is no smaller number having this property.
		

Crossrefs

A341214 a(n) is the smallest prime p such that p, p - 1, p - 2, ..., p - n + 1 have 2, 4, 6, ..., 2*n divisors respectively.

Original entry on oeis.org

2, 7, 47, 1019, 55414379
Offset: 1

Views

Author

Jaroslav Krizek, Feb 07 2021

Keywords

Comments

a(n) is the smallest prime p such that tau(p) = tau(p - 1)/2 = tau(p - 2)/3 = ... = tau(p - n + 1)/n = 2, where tau(k) = the number of divisors of k (A000005).
No such prime p exists for n > 5, so a(5) is the final term. - Jon E. Schoenfield, Feb 07 2021

Examples

			a(4) = 1019 because 1016, 1017, 1018 and 1019 have 8, 6, 4, and 2 divisors respectively and there is no smaller prime having this property (see A340872).
		

Crossrefs

Cf. A341213 (similar sequence for natural numbers).

A341212 Numbers m such that m, m - 1, m - 2, m - 3 and m - 4 have k, 2k, 3k, 4k and 5k divisors respectively.

Original entry on oeis.org

154379, 1075198, 4211518, 4700758, 4745227, 5954379, 6036043, 6330235, 6485998, 6524878, 6851227, 7846798, 8536027, 8556358, 11718598, 12100027, 12126838, 13584838, 14869379, 15320587, 16934998, 17074379, 18154379, 18904027, 19013129, 19774379, 19779995
Offset: 1

Views

Author

Jaroslav Krizek, Feb 07 2021

Keywords

Comments

Numbers m such that tau(m) = tau(m - 1)/2 = tau(m - 2)/3 = tau(m - 3)/4 = tau(m - 4)/5, where tau(k) = the number of divisors of k (A000005).
Corresponding values of numbers k: 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...
First prime term 55414379 (= A341214(5)) of this sequence is the smallest prime p such that p, p - 1, p - 2, p - 3 and p - 4 have 2, 4, 6, 8 and 10 divisors respectively.

Examples

			tau(154375) = 20, tau(154376) = 16, tau(154377) = 12, tau(154378) = 8, tau(154379) = 4.
		

Crossrefs

Programs

  • Magma
    [m: m in [5..10^6] | #Divisors(m - 1) eq 2*#Divisors(m) and #Divisors(m - 2) eq 3*#Divisors(m) and #Divisors(m - 3) eq 4*#Divisors(m) and #Divisors(m - 4) eq 5*#Divisors(m)]
    
  • Mathematica
    seq[max_, n_] := Module[{d = DivisorSigma[0, Range[n]], s = {}}, Do[If[Length @ Union[d/Range[n, 1, -1]] == 1, AppendTo[s, k - 1]]; d = Join[Rest@d, {DivisorSigma[0, k]}], {k, n + 1, max}]; s]; seq[5*10^6, 5] (* Amiram Eldar, Feb 08 2021 *)
  • PARI
    isok(m) = if (m>5, my(nb=numdiv(m)); (numdiv(m-1) == 2*nb) && (numdiv(m-2) == 3*nb) && (numdiv(m-3) == 4*nb) && (numdiv(m-4) == 5*nb)); \\ Michel Marcus, Apr 01 2021
  • Python
    def tau(n): # A000005
        d, t = 1, 0
        while d*d < n:
            if n%d == 0:
                t = t+2
            d = d+1
        if d*d == n:
            t = t+1
        return t
    n, a = 1, 2
    while n <= 27:
        nn, t1 = 1, tau(a)
        while nn < 5 and tau(a-nn) == (nn+1)*t1:
            nn = nn+1
        if nn == 5:
            print(n,a)
            n = n+1
        a = a+1 # A.H.M. Smeets, Feb 07 2021
    
Showing 1-3 of 3 results.