cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110399 Expansion of (theta_3(q)*theta_3(q^7) - 1)/2 in powers of q.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 2, 0, 0, 4, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Oct 22 2005

Keywords

Comments

Half the number of integer solutions to x^2 + 7*y^2 = n. - Jianing Song, Nov 20 2019

Examples

			G.f. = x + x^4 + x^7 + 2*x^8 + x^9 + 2*x^11 + 3*x^16 + 2*x^23 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 302, Entry 17(ii).

Crossrefs

Cf. A033719 (number of integer solutions to x^2 + 7*y^2 = n).
Similar sequences: A096936, A113406, A138806.

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 2, 4}, Mod[p, 7]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := e - 1; f[7, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    {a(n) = my(x); if( n<1, 0, x = valuation(n, 2); abs(x -1) * sumdiv(n/2^x, d, kronecker(-28, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1,  p==7, 1, kronecker(-7, p)==-1, (1+(-1)^e)/2, e+1)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x *O(x^n); polcoeff( (eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-2 * eta(x^7 + A)^-2 * eta(x^14 + A)^5 * eta(x^28 + A)^-2 - 1)/2, n))};

Formula

a(n) is multiplicative with a(2^e) = |e-1|, a(7^e)= 1, a(p^e) = e+1 if p == 1, 2, 4 (mod 7), a(p^e) = (1+(-1)^e)/2 if p == 3, 5, 6 (mod 7).
G.f.: Sum_{k>0} Kronecker(-7, k) x^k/(1-(-x)^k).
G.f.: (theta_3(q)*theta_3(q^7) - 1)/2 where theta_3(q) = 1 + 2*(q + q^4 + q^9 + ...).
a(2*n + 1) = A035162(2*n + 1) = A035182(2*n + 1). A033719(n) = 2*a(n) if n > 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(7)) = 0.593705... . - Amiram Eldar, Nov 16 2023