A110428 a(1) = 1 and a(2) = 2. Subsequent terms are generated like this: if a(m) is the last term available -- say a(2) -- then a(m+1) = a(m) * a(m-1), a(m+2) = a(m) * a(m-1) * a(m-2), ..., a(2*m-1) = a(m) * a(m-1) * a(m-2) * ... * a(2) * a(1), a(2*m) = a(2*m-1) * a(2*m-2), and so on.
1, 2, 2, 4, 4, 16, 32, 64, 64, 4096, 131072, 2097152, 8388608, 33554432, 67108864, 134217728, 134217728, 18014398509481984, 1208925819614629174706176, 40564819207303340847894502572032, 340282366920938463463374607431768211456
Offset: 1
Examples
a(3) = a(2)*a(1) = 2. [Now a(3) is the last term available.] a(4) = a(3)*a(2) = 4. a(5) = a(3)*a(2)*a(1) = 4. [Now a(5) is the last term available.] a(6) = a(5)*a(4) = 16. a(7) = a(5)*a(4)*a(3) = 32. a(8) = a(5)*a(4)*a(3)*a(2) = 64. a(9) = a(5)*a(4)*a(3)*a(2)*a(1) = 64. [Now a(9) is the last term available.] a(10) = a(9)*a(8) = 4096. a(11) = a(9)*a(8)*a(7) = 131072. ... a(17) = a(9)*a(8)*...*a(1) = 134217728. [Now a(17) is the last term available.] a(18) = a(17)*a(16) = 18014398509481984. [Example extended by _Petros Hadjicostas_, Nov 13 2019]
Crossrefs
Programs
-
Maple
a := proc(n) option remember; `if`(n < 3, [1, 2][n], a(n - 1) * a(2^ceil(log[2](n - 1)) + 2 - n)); end proc; seq(a(n), n = 1..25); # Petros Hadjicostas, Nov 13 2019
Formula
From Petros Hadjicostas, Nov 13 2019: (Start)
a(n) = a(n-1) * a(m) for n >= 3, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1 and a(2) = 2.
a(A000051(n)) = a(2^n + 1) = a(2^n) for n >= 1.
a(A000051(n) + 1) = a(2^n + 2) = a(2^n + 1) * a(2^n) = a(2^n)^2 for n >= 1.
log[2](a(n)) = A329474(n) for n >= 1. (End)
Extensions
More terms from Joshua Zucker, May 10 2006
Comments